Team:METU Turkey Software

From 2010.igem.org

Revision as of 18:00, 27 October 2010 by Fsyauqy (Talk | contribs)

Team

METU Turkey Software is an interdisciplinary team of 8 students and 3 advisors from various backgrounds such as Molecular Biology, Bioinformatics, Computer Engineering and Computer Education and Instructional Technology. We have put our knowledge and experience in our fields together to bring a much needed solution to a daily problem in field of synthetic biology for iGEM 2010

Tolga Can

Tolga Can received his PhD in Computer Science at the University of California at Santa Barbara in 2004. He is currently an Assistant Professor of the Department of Computer Engineering, Middle East Technical University, Ankara, Turkey. His main research interests are in bioinformatics, especially prediction and analysis of protein-protein interaction networks, and statistical methods such as graphical models and kernel methods.

Yeşim Aydın-Son

Yeşim, has received her M.D in 1999 from HÜTF, Ankara and completed her Ph.D at University of TN, Knoxville on Genome Science and Technology in 2006. After working as a research fellow at City of Hope National Medical Center, Duarte,CA , she has recently accepted her current position at METU Informatics Institute as an Assistant Professor of Medical Informatics. She is also the acting coordinator of the Bioinformatics Graduate Program in METU. Main focus of her research is Genomic Biomarker discovery and applications of biomarker research in Personalized Medicine . Her research group is working on building a new integrated application for genome wide association of SNP biomarkers and discovery of genes and pathways related to diseases, where SNP genotyping data from both microarray and next generation sequencing experiments can be analyzed in all-in-one step.

Ömer Nebil Yaveroğlu

Content here

Burak Yılmaz

I am a recent graduate of METU Molecular Biology and Genetics department and now studying towards my masters degree on Molecular Bioengineering at METU. My interest in synthetic biology did start during my undergraduate years and after graduation I started up the Sentegen company which is the first biotechnology based company focused on synthetic biology in Turkey. I continue my research and training in synthetic biology while also contributing to the development of the field in my country. We need new scientific revolutions to solve huge problems of life and emerging field of synthetic biology is best candidate for biotechnological revolution. I am interested in synthetic biology applications, along with Lab-on-a-Chip devices for molecular biology techniques, and we are designing gene synthesis chips to produce biobricks - raw materials of synthetic garage biology- faster and cheaper. I enjoy snowboarding, cycling and write poems.

Muhammad Akif Ağca

Content here

Cihan Taştan

2010 is the last year for me as B.S degree at Molecular Biology and Genetics department. Moreover, I am studying at Computer Engineering as my minor department. My research will be on Scientist position at Cancer and Virology Relationship (Let's say Viral Oncology) by integrating novel technices of Bioinformatics and Synthetic Biology approaches. This is my second year at iGEM.

Hassan Salehe Matar

Ascended up the hills of Kilimanjaro, crossed over the savannah of Serengeti and finally landed on the country of Istanbul my name is Hassan Salehe. I'm a final year undergraduate student at the Department of Computer Engineering, Middle East Technical University. In Metu Turkey Software I'm a database administrator and a core Software developer. I'm interested in software development, database management, Computer networks and Bioiformatics I do marathon, I like swimming and I'm fond of action movies.Oh, I was about to forget to tell you that I also like traveling. Thanks!

Ayub Rokhman Wakhid

From the country of thousand islands, across the ocean he came to Ankara. Now he is finishing his undergraduate study at the Department of Computer Education and Instructional Technology, Middle East Technical University. This is the first time he joined IGEM. He is in design team in Metu Turkey Software. He has interest in animation, web development, and instructional technologies.

Muhammad Fakhry Syauqy

A senior undergraduate student of Computer Education and Instructional Technology at Middle East Technical University. He came far away from Indonesia to Ankara, Turkey, to make a great leap on his life. His role in this team is designer. Together with Ayub and Saygın, they designs the team's wiki, poster and presentation. He is interested in 2D and 3D designing, web developing and animation. He loves playing football and working with computer. His motto is "Possibilities are limitless"

Saygın Karaaslan

Our multimedia support and the core of our design and animation team. Saygın, is a senior in Biology department at METU and about to launch his own scientific animation company. After graduation he will be continuing his academic studies on medical informatics, scientific data visualization and 3D molecular animations. He has recently completed the production of OCW for molecular biology laboratory lectures as video-notes. Never says no to a good soccer game or mafia II. We look forward for the day for the premier of his documentary on "History of Science"

Yener Tuncel

I have graduated from METU Molecular Biology and Genetics department and just started the Bioinformatics Graduate Program this fall. My main research interests is in systems biology, and its applications. Currently I am focused on genome wide association of SNP biomarkers, where we will utilize systems biology approaches for discovering disease gene and pathway associations after highthrough-put genotyping studies. During the course of our research on the iGEM project this summer as a Molecular Biologist I worked on the standardization of the parts information for our applicaiton database. Also, as a Bioinformatician in training, contributed to the development of the algorithms for the BioGuide software. Besides research, I develop educational tools for biology and bioinformatics education and getting used to do couples dancing.

Motivation

Since 2008, we have been participating in iGEM as METU ( Middle East Technical University) wet-lab team, and each year we have noticed the increasing number of teams participating, along with an increase in biobricks entries at partregistry.org. While having more choices of biobricks to choose from is incredible, searching for and choosing the appropriate parts is becoming a challenge. This year during the construction process of iGEM biobrick parts for our new project, we felt the need for an application to find interacting parts based on an input/output model to design the genetic constructs. Using a specialized software for searching the parts registry to find possible biobricks to include into our construct would be much easy, fast and accurate than manual. We have shared our need with a group of friends who are software engineers, and initiated the METU_Turkey_SOFTWARE team where we worked together over this summer to build the BIO-Guide software.

Scope and Future Aspects

The partregistry.org is a continuously growing collection of standard genetic parts that can be mixed and matched to build synthetic biology devices and systems. The Registry is based on the principle of "get some, give some". Registry users benefit from using the parts and information available in the Registry for designing their own genetically engineered biological systems. In exchange, the expectation is that Registry users will contribute back to the information and the data on existing parts and will submit new parts they have designed in order to improve this community resource.

As an expanding database partregistry.org needs to be more organized and the standardization template needs to be improved. Additionally, the potential of multiple ways of using each part in different construct combination brings out the necessity for an application to search through the database. BioGuide is the first designed software that organizes over 1000 parts in partregistry.org as possible atomics parts to build new biological device and systems for specific input and outputs based on graph theory. The requirement of similar applications and software tools are now inevitable in the emerging field of synthetic biology. The innovative approach that makes the partregistry.org easy to use for synthetic biology applications is the collection of standardized parts that can be used in any combination with minimal effort under one database. But while working on our algorithm to search for possible combinations of parts depending on the given input and output, we have realized that present standards are inadequate and parts registry form must be improved.

In very near future a new format for parts registry form is needed and few additional features should be implemented to have more control on the database. We are planning to suggest a new format and features for the parts registry based on the survey results we have received. And planning to build the next version of Bioguide based on the revised parts registry form. Along with using new parts registry standards we will be improving the algorithm, so that the software can search through more complex relations and returns all possible functional constructs.

Project Introduction

As the field of Synthetic Biology is on the rise, iGEM is growing up very fast and the number of parts in the parts registry is increasing with the addition of more complex parts each day. After facing some difficulty while running our algorithms on the parts registry, the need for more effective standardization of parts entry was apparent. We have investigated the information on parts in iGEM’s 2010 distribution and reorganized the information on the parts registry forms according to the needs of our algorithm. Then we have used graph theoretic modeling to visualize the relations between iGEM Parts and to standardize the representation of the parts as much as possible by graph theoretical methods. This helped us to find input output relations between the parts. Furthermore, our program BioGuide is now able to provide alternative pathways to construct the most reliable and functional Biobrick devices with respect to given inputs and expected outputs as a guide to Biobricks parts registry.

Notebook

Download

Collaboration

Part Registry Survey

Click here to go to survey page..


Results

(including responses between 10th -22nd of Oct 2010)

General Profile of Participants

  • The following teams are dedicated as collaborators with more than 60% team participation are
    • INSA-Lyon
    • Lethbridge
    • WashU
  • Out of 244 participants between 10 to 22.10.2010, 57% of the participant had scientific degrees from B.Sc to Professor and 18% had graduate degrees. 18% of participants are enrolled in their teams as either Instructors or Advisors.
  • 95 teams have responded to the survey while we are still waiting to hear from 33 teams. 74% teams participated with one or more members to the survey.
  • 75% of participants were interested with synthetic biology field for academic purposes.

Browsing the Registry of Standard Parts

  • 56% of participants think that it is not easy to search for the parts in Registry of Standard Parts. Many comments indicate a need for a better search engine and more flexible keyword search options, especially excepting aliases. Also many are longing for recognizable parts names, which will ease searching with keyword.

Partnership with Google and enforcing standardized parts names are suggested

As a global organization iGEM can offer the Parts Registry in different languages and more illustrations describing how the system works.

Content of Registry of Standard Parts

  • 57% of participants agree that the number of parts registered in the Registry of Standard Parts is not enough for their projects.
  • 55% of participants think that there are enough and useful parts distributed in iGEM Plates that we can use in our projects.

Even though most agree the number of parts in the registry is impressive, still they find it limited when it comes to design different devices for diverse applications especially in different species other than E. Coli. Participants believe that if there are more functional standardized parts, especially protein coding sequences and promoter-RBS , they can design devices according to the needs of the community instead of designing what can simply be assembled into a device.

Encouraging development of vectors and standards for new species and new standardized parts in different research areas is suggested.

Enforcing submission of right DNA sequences and working conditions for each part is suggested.

Few recommend expanding iGEM into a collaborative effort rather than an undergraduate tournament, which will increase the number and the diversity of the parts designed and submitted all throughout the year.

Submission to the Parts Registry

  • 52% of participants said that they have not encountered difficulties during submitting parts. Even though participants are satisfied with the web interface of the registry, most complains about the pSB1C3 as the new standard plasmid to submit DNA.
  • 71% of participants are like minded with our team's opinion, which is that The nomenclature of part IDs such as construct, device, composite parts, protein generator, is confusing as there is no consensus on how to use them correctly.

Terminology and categorization used on iGEM’s Parts Registry should be re-described and correct use of terminology should be enforced during the submission process.

  • 75% of participants agree that different, specified submission interfaces should be designed for contructs, promoter, RBS, CDS and terminals is needed during Registry of Standard Parts. But, there are very strong and valid arguments against it such as, losing the flexibility of the registry will not allow future submission of unclassified parts.

We suggest keeping the parts submission interface as is, until these concerns are addressed.

  • 75% of participants agree that Out-dated, un-available and not-characterized parts in the Registry of Standard Parts should be removed to an archive after the consent of the designer.

“It would be great to see some sort of organization like this! I agree that unavailable parts should be followed up on and removed if necessary. I also think that parts which are not sufficiently documented should be highlighted in some way. Once these parts are identified, teams can actively characterize them as part of their projects or as side projects.”

“Think about these things: (i) who decides when a part is out-dated, and how can that person know that an old part cannot have a novel use in the future? (ii) likewise, an uncharacterized part may be both characterized and used in the future”

We suggest building a backup system, such as an archive, to sort out the rarely used, un-available and un-categorized parts until they are in line with the enforced standards.

  • 91% of participants have same opinion with us, which is that standardization of the nomenclatures used for each different composition of parts is necessary.

Standards that should be enforced and Additional New Standards

According to our survey, from high rated to low, these standards have been rated which has been used while assigning a name to parts

  • 33% Type of part
  • 17% Input
  • 17% Output
  • 14% Version
  • 10% Year
  • 9% Group

Along with above, having short recognizable part names along with function and performance , Genbank/EMBL link and organism information is important.

  • 93% of participants have said that for the parts that are marked as “WORKS” distinguishing the parts with quantitative experimental validation vs parts without this information is important. Most participants have encountered with similar problems about parts that don’t work under their lab conditions or works but not they were claimed for.
  • 89% of participants have same opinion with us, which is that iGEM should sub-categorize the “WORKS” comment into 1) “Quantitative” for parts which are characterized with experiments and 2) “Qualitative” for parts which are not characterized will be an appropriate measure for standardization of Biobrick database.

In order to overcome these problems we suggest enforcing the working conditions title for the registry entrance, in order to collect quantitative experimental details on submitted parts, which might slow down the registration process but will definitely increase the quality of the database.

  • 61% of participants agree that POPS (Polymerase Per Second) should be assigned to every part or biobricks with a promoter, where appropriate. - 57% of participants have been agree that RIPS (Ribosome per Second) should be assigned to every part or biobricks with a RBS brick.

Though most participants agree the need for POPS and RBS information , they are concerned about the workload it would bring to individual labs.

“To do this, the Registry need to define a reliable and easy method of determining the PoPS for teams to use. However, I would say that there are better systems for quantifying promoter output than PoPS, and they should be used instead, if possible”.

  • 67% of participants have thought that entering POPS information should not be mandatory while submitting new parts. Similarly, 65% of participants disagree that entering RIBS information should be mandatory while submitting new parts

Even though the researchers feeling the need for this information they are shying away from requesting it as a mandatory title for parts registry as it would be difficult for underfunded and inexperienced groups to perform these measurements.

We strongly suggest starting a forum on how to quantify the performance of promoters and genes to bring an easy to measure standard for the efficiency of the parts. Additionally iGEM should the responsibility and provide the measurements for the each promoter and gene included in the distributions. The second choice would be even better in terms of standardization as all the measurement will be performed by one center under similar conditions and with experienced researchers, which will allow user to compare and contrast the efficiencies of the parts more accurately.