[1] Bae, G., G. Choi
(2009)."Decoding of light signals by plant phytochromes and their interacting proteins." Annu Rev Plant Biol 59:281-311.
[2] Baker, T. A., R. T. Sauer, et al.
(2009)."Engineering synthetic adaptors and substrates for controlled ClpXP
degradation." J Biol Chem 284(33): 21848-55.
[3] Baker, T. A., R. T. Sauer, et al.
(2009).
"Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a
AAA+ protein-unfolding machine." Cell139(4): 744-56.
[4] Baker, T. A., R. T. Sauer, et al.
(2010).
"Control of substrate gating and translocation into ClpP by channel residues and
ClpX binding." J Mol Biol399(5): 707-18.
[5] Baker,
T. A., R. T. Sauer, et al. (2005). "Versatile modes of peptide recognition by
the AAA+ adaptor protein SspB." Nat Struct Mol Biol12(6): 520-5.
[6] Baker,
T. A., R. T. Sauer, et al. (2005). "Rebuilt AAA + motors reveal operating
principles for ATP-fuelled machines."
Nature437(7062): 1115-20.
[7] Baker, T. A., R. T. Sauer, et al.
(2006).
"Engineering controllable protein degradation." Mol Cell22(5):
701-7.
[8] Baker, T. A., R. T. Sauer, et al.
(2007).
"Altered tethering of the SspB adaptor to the ClpXP protease causes changes in
substrate delivery." J Biol Chem282(15): 11465-73.
[9] Deisseroth, K., F. Zhang, et al.
(2006).
"Channelrhodopsin-2 and optical control of excitable cells." Nat Methods3(10): 785-92.
[10]
Fussenegger, M., M. Tigges, et al. (2009). "A tunable synthetic mammalian
oscillator." Nature457(7227): 309-12.
[11]
Goldberg, A. L. (2003). "Protein degradation and protection against misfolded or
damaged proteins."
Nature426(6968): 895-9.
[12] Gregersen, N., C. B.
Pedersen, et al. (2003).
"Misfolding, degradation, and aggregation of variant proteins. The molecular
pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency." J Biol
Chem278(48): 47449-58.
[13]
Grossman, A. D. and K. L. Griffith (2008). "Inducible protein degradation in
Bacillus subtilis using heterologous peptide tags and adaptor proteins to target
substrates to the protease ClpXP." Mol Microbiol70(4): 1012-25.
[14]
Houry, W. A., U. A. Wojtyra, et al. (2003). "The N-terminal zinc binding domain
of ClpX is a dimerization domain that modulates the chaperone function." J
Biol Chem278(49): 48981-90.
[15] Hughes, J., F. T. Landgraf, et al.
(2001).
"Recombinant holophytochrome in Escherichia coli." FEBS Lett508(3):
459-62.
[16]
Isacoff, E. Y. and P. Gorostiza (2008). "Optical switches for remote and
noninvasive control of cell signaling." Science322(5900): 395-9.
[17] Kohchi, T., K. Mukougawa, et al.
(2006).
"Metabolic engineering to produce phytochromes with phytochromobilin,
phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli." FEBS
Lett580(5): 1333-8.
[18]
Kohchi, T., K. Mukougawa, et al. (2006). "Metabolic engineering to produce
phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin
chromophore in Escherichia coli." FEBS Lett580(5): 1333-8.
[19]
Lagarias, J. C. and G. A. Gambetta (2001). "Genetic engineering of phytochrome
biosynthesis in bacteria." Proc Natl Acad Sci U S A98(19):
10566-71.
[20]
Lagarias, J. C., N. C. Rockwell, et al. (2006). "Phytochrome structure and
signaling mechanisms."
Annu Rev Plant Biol57: 837-58.
[21]
Lagarias, J.C., M.T. McDowell (2002). "Analysis and reconstitution of
phytochromes." Heme, Chlorophyll, and Bilins: Methods and Protocols,
293-309
[22]
Maurizi, M. R., R. Grimaud, et al. (1998). "Enzymatic and structural
similarities between the Escherichia coli ATP-dependent proteases, ClpXP and
ClpAP." J Biol Chem273(20): 12476-81.
[23]
Millar, A. J., O. Sorokina, et al. (2009). "A switchable light-input,
light-output system modelled and constructed in yeast." J Biol Eng3:
15.
[24]
Moffat, K. and A. Moglich (2010). "Engineered photoreceptors as novel
optogenetic tools." Photochem Photobiol Sci9(10): 1286-300.
[25] Moffat, K., A. Moglich, et
al. (2010).
"Structure and function of plant photoreceptors." Annu Rev Plant Biol
61: 21-47.
[26]
Moroder, L. and C. Renner (2006). "Azobenzene as conformational switch in model
peptides." Chembiochem7(6): 868-78.
[27]
Morrison, D. A. and S. Ahlawat (2009). "ClpXP degrades SsrA-tagged proteins in
Streptococcus pneumoniae."
J Bacteriol191(8): 2894-8.
[28] Muir,
T. W. and A. B. Tyszkiewicz (2008). "Activation of protein splicing with light
in yeast." Nat Methods5(4): 303-5.
[29]
Quail, P. H. (2002). "Phytochrome photosensory signalling networks." Nat Rev
Mol Cell Biol3(2): 85-93.
[30] Quail, P. H., R. Khanna, et al.
(2004). "A
novel molecular recognition motif necessary for targeting photoactivated
phytochrome signaling to specific basic helix-loop-helix transcription factors."
Plant Cell16(11): 3033-44.
[31] Quail, P. H., E. Schafer, et al.
(2006). "Photoactivated
phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated
degradation."
Mol Cell23(3): 439-46.
[32] Quail, P. H., S. Shimizu-Sato, et al.
(2002). "A
light-switchable gene promoter system." Nat Biotechnol20(10):
1041-4.
[33] Quail PH., D. Wagner et al. (1996) "Two small spatially distinct regions of phytochrome B are required for efficient signaling rates." Plant Cell8:859–71.
[34] Park Y., H. Song (2008) "A degradation signal recognition in prokaryotes." J. Synchrotron Rad15:246–249.
[35]
Rosen, M. K., D. W. Leung, et al. (2008). "Genetically encoded photoswitching of
actin assembly through the Cdc42-WASP-Arp2/3 complex pathway." Proc Natl Acad
Sci U S A105(35): 12797-802.
[36] Schafer, E., T. Kunkel, et
al. (1993).
"In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco
apophytochrome B." Eur J Biochem215(3): 587-94.
[37] Schaffner, K., C. Hill, et
al. (1994).
"Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and
formation of photoactive chromoproteins by assembly with phycocyanobilin."
Eur J Biochem223(1): 69-77.
[38]
Sejnowski, T. J. and M. U. Gillette (2005). "Physiology. Biological clocks
coordinately keep life on time."
Science309(5738): 1196-8.
[39]
Sharrock, R. A. (2008). "The phytochrome red/far-red photoreceptor superfamily."
Genome Biol9(8): 230.
[40] Su,
Z., H. Li, et al. (2010). "A protease-based strategy for the controlled release
of therapeutic peptides." Angew Chem Int Ed Engl49(29): 4930-3.
[41]
Voigt, C. A., A. Levskaya, et al. (2005). "Synthetic biology: engineering
Escherichia coli to see light."
Nature438(7067): 441-2.
[42] Voigt, C. A., A. Levskaya, et al.
(2009).
"Spatiotemporal control of cell signaling using a light-switchable protein
interaction." Nature461(7266): 997-1001.
[43]
Weaver, D. R. and S. M. Reppert (1997). "Forward genetic approach strikes gold:
cloning of a mammalian clock gene."
Cell89(4): 487-90.
[44]
Weitz, C. J., K. F.
Storch, et al. (2002).
"Extensive and divergent circadian gene expression in liver and heart."
Nature417(6884): 78-83.
[45] Wu SH., JC. Lagarias JC. (2000) "Defining the bilin lyase domain: lessons from the extended phytochrome superfamily." Biochemistry39:13487–95.
[46]
Zuber, P. and Y.
Zhang (2007).
"Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus
subtilis and effects of disulfide stress on ClpXP activity."
J Bacteriol189(21): 7669-80.