From 2010.igem.org
(Difference between revisions)
|
|
Line 109: |
Line 109: |
| === Final design === | | === Final design === |
| {|$ | | {|$ |
- | <big><pre style="color:red">NICE | CRE | Terminator | loxP | Acid Tolerance Inducer (P170) | Export tag | SCM | loxP | Terminator</pre></big> | + | <big><font style="color:red">NICE | CRE | Terminator | loxP | Acid Tolerance Inducer (P170) | Export tag | SCM | loxP | Terminator</font></big> |
| | | |
| | | |
Revision as of 16:35, 12 October 2010
Project Motivation
On average, the world loses 2 people to cardiovascular complications every minute; Diabetes claims 4 times that number making it the 6th most common cause of death worldwide. India alone contributes 1 in every 25 of the diabetes cases every year. The World Health Organisation recently reported that up to 245 million people suffer from diabetes worldwide. It is estimated that diabetes consumes between 5 to 10% of the world's health care expenditure, and this is expected to go up to 12% in the next 20 years. There is, however, no known cure to this epidemic, and our only hope is to fall back to the old adage, 'Prevention is better than cure'. It has been known for a while that reducing the calories consumed in the form of sugar will help in the prevention of this disease, and is an essential part of living-with the disease. To date, seven different sweetening proteins have been identified and approved for consumption by the FDA. However, these proteins face several issues in production, separation and purification, making them an ideal candidate for further work, particularly focusing on expression and regulation.
|
We aim to use synthetic biology to engineer pro-biotic lactic acid bacteria used in the production of dairy products like yogurt, buttermilk and curds, to produce Monellin, a heat and pH stable sweetening protein. If we are successful in engineering Lactococcus lactis, a Gram positive bacteria to express and secrete Monellin, we will be able to produce dairy products low in poly-saccharide-based sweeteners, radically reducing the calorific content of these products. In order to be able to control the level of expression in this system, we plan to develop a regulatory system(s) that can be tweaked to suit varied purposes.
|
Project Abstract
We aim to use synthetic biology to engineer pro-biotic lactic acid bacteria to produce Monellin, a heat and pH stable sweetening protein. If we are successful in engineering Lactobacillus lactis, a Gram positive bacteria to express and secrete Monellin, we will be able to produce dairy products low in poly-saccharide-based sweeteners, radically reducing the calorific content of these products. In order to be able to control the level of expression in this system, we plan to develop a regulatory system(s) that simulates a logical AND gate in response to two bioloical inputs. We plan to use the decreasing pH during curdling and the addition of nicin as the two inputs. To achieve the AND gate we will be using the CRE gene in combination with loxP sites. By placing the loxP sites appropriately, we will create an expression system that will produce the Monellin in a window of conditions.
|
Ideation
Project Details
Part Design
PCR Products
- Legend
- This color represents the portion to be added by Extension PCR / Inverse PCR / Assembly PCR.
- This color represents sites that lie in the middle of the parts to be submitted. These are placed so that the promoters and the inserts can be switched out.
- This represents an apparent restriction site, one that cannot be used due to the sequences' presence in an ORF
- SCM
- Gene of 295 bp to be synthesised by Assembly PCR / LCR.
- Block 1
- Kpn1 | P170 | RBS | HindIII
- Kpn1 | NICE | RBS | HindIII
- HindIII| GFP | Terminator | BamH1
- Kpn1| Constitutive | RBS | GFP | Terminator | BamH1
- Block 2
- Kpn1 | Constitutive | RBS | HindIII | SP310mut2 | Nhe1 | GFP | Terminator | BamH1 (by Inverse PCR) // Can't design a Primer this big.
- Kpn1 | Constitutive | RBS | HindIII | SP310mut2 | Nhe1
- Nhe1 | GFP | Terminator | BamH1 (Extension PCR from 1.4)
- Block 3
- Kpn1 | Constitutive | RBS | HindIII
- HindIII | CRE-NLS | Terminator | Sac1
- Sac1 | Constitutive | RBS | loxP | Nhe1 | GFP | Terminator | loxP | Xho1 (by Inverse PCR + Extension PCR)
- Xho1 | RFP | Terminator | BamH1
- Final Design
- Kpn1 | NICE | RBS | HindIII (as made in 1.1)
- HindIII | CRE-NLS | Terminator | Sac1 (as made in 3.2)
- Sac1 | loxP | P170 | RBS | SP310mut2 | Xho1 (by Inverse PCR + Extension PCR)
- Xho1 | SCM | Nhe1 | loxP | Terminator | BamH1
- Part Submission
- EcoR1 | Not1 | Xba1 | NICE | RBS | Spe1 | Not1 | Pst1
- EcoR1 | Not1 | Xba1 | P170 | RBS | Spe1 | Not1 | Pst1
- EcoR1 | Not1 | Xba1 | Kpn1 | Constitutive | RBS | HindIII | SP310mut2 | Nhe1 | GFP | Terminator | BamH1 | Spe1 | Not1 | Pst1
- EcoR1 | Not1 | Xba1 | Kpn1 | Constitutive | RBS | HindIII | CRE | Terminator | Sac1 | Constitutive | RBS | loxP | Sma1 | GFP | Terminator | loxP | Xho1 | RFP | Terminator | BamH1 | Spe1 | Not1 | Xba1
- EcoR1 | Not1 | Xba1 | Kpn1 | NICE | RBS | HindIII | CRE-NLS | Terminator | Sac1 | loxP | P170 | RBS | SP310mut2 | Xho1 | SCM | BamH1 | loxP | Terminator | Spe1 | Not1 | Pst1
|
Proof of Concept
- Block 1 - To characterize promoters against a standard
-
-
- Constitutive | GFP | Terminator
- Block 2 - Test of export efficiency
- Constitutive | GFP | Terminator
- Constitutive | SP310mut2 | GFP | Terminator
- Block 3 -To test CRE-loxP system
- Constitutive | RBS | CRE | Terminator | Constitutive | RBS | loxP | GFP | Terminator | loxP | RFP | Terminator
- Acid Tolerance Promoter (P170) | CRE | Terminator | loxP | Consitutive | GFP | Terminator | loxP | RFP | Terminator
|
Final design
NICE | CRE | Terminator | loxP | Acid Tolerance Inducer (P170) | Export tag | SCM | loxP | Terminator
|
The Experiments
Part 3
Results