Team:Georgia State/Project
From 2010.igem.org
(→Pichia Pastoris as a host organism for iGEM) |
(→Pichia Pastoris as a host organism for iGEM) |
||
Line 4: | Line 4: | ||
==Pichia Pastoris as a host organism for iGEM== | ==Pichia Pastoris as a host organism for iGEM== | ||
- | [[Image:Pichia_pastoris.jpg|right]]Pichia pastoris is a methylotrophic yeast used as an alternative host for protein production in addition to Escherichia coli and Saccharomyces cerevisiae. There are several reasons why P. Pastoris is an ideal host organism. Its ability to perform eukaryotic post-translational modifications, high yields of recombinant protein, and its genetic similarity to Saccharomyces cerevisiae are very attractive traits(Cereghino and Cregg, 2000). | + | [[Image:Pichia_pastoris.jpg|right]]''Pichia pastoris'' is a methylotrophic yeast used as an alternative host for protein production in addition to ''Escherichia coli'' and ''Saccharomyces cerevisiae''. There are several reasons why ''P. Pastoris'' is an ideal host organism. Its ability to perform eukaryotic post-translational modifications, high yields of recombinant protein, and its genetic similarity to Saccharomyces cerevisiae are very attractive traits(Cereghino and Cregg, 2000). |
- | Because of these reasons, P.pastoris has quickly gained popularity for recombinant protein production. The Georgia State 2010 team believes P. pastoris would be an excellent chassis for the iGEM competition. Our goal is to provide a tool box of parts necessary for the genetic manipulation of this organism. Parts will include a plasmid backbone, several parts providing alternative selectivity options and promoter systems. In addition, our tool box will be used to produce a flu virus antigen in P. pastoris as an example of how this system could be used for vaccine production. We hope our contributions will enable future users to maximize the use and further explore the incredible potential P. pastoris has to offer! | + | Because of these reasons, ''P.pastoris'' has quickly gained popularity for recombinant protein production. The Georgia State 2010 team believes ''P. pastoris'' would be an excellent chassis for the iGEM competition. Our goal is to provide a tool box of parts necessary for the genetic manipulation of this organism. Parts will include a plasmid backbone, several parts providing alternative selectivity options and promoter systems. In addition, our tool box will be used to produce a flu virus antigen in ''P. pastoris'' as an example of how this system could be used for vaccine production. We hope our contributions will enable future users to maximize the use and further explore the incredible potential ''P. pastoris'' has to offer! |
Check out the current toolbox here !! [[Team:Georgia State/Parts]] | Check out the current toolbox here !! [[Team:Georgia State/Parts]] | ||
[[Image:Pichia_tool_box_picture.jpg|right]] | [[Image:Pichia_tool_box_picture.jpg|right]] |
Revision as of 18:18, 21 September 2010
Over the past month, the team has worked diligently in preparing P. pastoris and Cyanobacteria competency, transforming DNA BioBrick parts, and optimizing growth conditions for future transformations. In addition, the group convened for the first annual GSU iGEM Boot Camp to work on team building, understanding the basic concepts, and organizing public relations.
Pichia Pastoris as a host organism for iGEM
Pichia pastoris is a methylotrophic yeast used as an alternative host for protein production in addition to Escherichia coli and Saccharomyces cerevisiae. There are several reasons why P. Pastoris is an ideal host organism. Its ability to perform eukaryotic post-translational modifications, high yields of recombinant protein, and its genetic similarity to Saccharomyces cerevisiae are very attractive traits(Cereghino and Cregg, 2000).
Because of these reasons, P.pastoris has quickly gained popularity for recombinant protein production. The Georgia State 2010 team believes P. pastoris would be an excellent chassis for the iGEM competition. Our goal is to provide a tool box of parts necessary for the genetic manipulation of this organism. Parts will include a plasmid backbone, several parts providing alternative selectivity options and promoter systems. In addition, our tool box will be used to produce a flu virus antigen in P. pastoris as an example of how this system could be used for vaccine production. We hope our contributions will enable future users to maximize the use and further explore the incredible potential P. pastoris has to offer!
Check out the current toolbox here !! Team:Georgia State/Parts