Team:Johns Hopkins/Project

From 2010.igem.org

(Difference between revisions)
(Quick Overview)
Line 23: Line 23:
<!--- The Mission, Experiments --->
<!--- The Mission, Experiments --->
 +
 +
== '''Abstract''' ==
 +
 +
If the goal of iGEM and the Parts Registry is to take the messy world of genetic engineering and transform it into something like the standardized world of electrical engineering, it may be useful if electronic systems could directly interface with biological systems. Past iGEM projects have used chemical or optical stimuli to actuate transcriptional responses. Our project, however, seeks to add voltage sensitivity to Saccharomyces cerevisiae. Baker’s yeast was chosen because in some sense yeast have a system that responds to voltage input. With a voltage stimulus one can open the voltage-gated calcium channels of yeast, causing calcium ions to rush into the cytoplasm. This causes calcineurin to dephosphorylate Crz1, which enters the nucleus and binds various promoters. Our group presents a library of characterized Crz1-sensitive promoters of both naturally-occurring and synthetic varieties. Genes downstream of these promoters are thus voltage-regulated in media containing calcium.
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
Line 34: Line 38:
!align="center"|[[Team:Johns_Hopkins/Safety|Safety]]
!align="center"|[[Team:Johns_Hopkins/Safety|Safety]]
|}
|}
-
 
-
== '''Abstract''' ==
 
-
 
-
If the goal of iGEM and the Parts Registry is to take the messy world of genetic engineering and transform it into something like the standardized world of electrical engineering, it may be useful if electronic systems could directly interface with biological systems. Past iGEM projects have used chemical or optical stimuli to actuate transcriptional responses. Our project, however, seeks to add voltage sensitivity to Saccharomyces cerevisiae. Baker’s yeast was chosen because in some sense yeast have a system that responds to voltage input. With a voltage stimulus one can open the voltage-gated calcium channels of yeast, causing calcium ions to rush into the cytoplasm. This causes calcineurin to dephosphorylate Crz1, which enters the nucleus and binds various promoters. Our group presents a library of characterized Crz1-sensitive promoters of both naturally-occurring and synthetic varieties. Genes downstream of these promoters are thus voltage-regulated in media containing calcium.
 
== Project Details==
== Project Details==

Revision as of 03:22, 17 September 2010


Johns Hopkins logo.png
File:Johns Hopkins team.png
Your team picture

Contents

In a Sentence...

We are engineering Saccharomyces cerevisiae to be voltage-sensitive at the transcriptional level.


Abstract

If the goal of iGEM and the Parts Registry is to take the messy world of genetic engineering and transform it into something like the standardized world of electrical engineering, it may be useful if electronic systems could directly interface with biological systems. Past iGEM projects have used chemical or optical stimuli to actuate transcriptional responses. Our project, however, seeks to add voltage sensitivity to Saccharomyces cerevisiae. Baker’s yeast was chosen because in some sense yeast have a system that responds to voltage input. With a voltage stimulus one can open the voltage-gated calcium channels of yeast, causing calcium ions to rush into the cytoplasm. This causes calcineurin to dephosphorylate Crz1, which enters the nucleus and binds various promoters. Our group presents a library of characterized Crz1-sensitive promoters of both naturally-occurring and synthetic varieties. Genes downstream of these promoters are thus voltage-regulated in media containing calcium.

Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety

Project Details

Part 2

The Experiments

Part 3

Results