Team:KAIST-Korea/Project/Methods

From 2010.igem.org

(Difference between revisions)
(Cloning)
Line 4: Line 4:
<tr>
<tr>
<td valign="top" width="75%">
<td valign="top" width="75%">
-
== Cloning ==
+
== Cloning Plan ==
-
Cloning
+
<br>
<br>
-
Aim;
+
Aim
<br>
<br>
# Build DiscoverY yeast: transform genes to S.pombe and turn it into the yeast we want.
# Build DiscoverY yeast: transform genes to S.pombe and turn it into the yeast we want.
Line 31: Line 30:
Insert RE treated gene to TA cloning vector -> Ligation -> E.coli transformation -> Prep -> Loading (2 d) – team
Insert RE treated gene to TA cloning vector -> Ligation -> E.coli transformation -> Prep -> Loading (2 d) – team
 +
== PCR ==
== PCR ==

Revision as of 12:47, 23 August 2010

 

Cloning Plan


Aim

  1. Build DiscoverY yeast: transform genes to S.pombe and turn it into the yeast we want.
  2. BioBricks to submit: insert genes to vectors provided by iGEM (pSB1C3).


Protocol

  1. Design primer (1 day) – Team
  2. Make primer (2~3 d) – Bioneer
  3. Gene: PCR / Vector: E.coli transformation, raise, prep -> Both: Purification (1 d) – Team
  4. Both: Restriction enzyme treatment; 2 cut -> Purification (1 d) – Team
  5. TA cloning (1 d) – Team
  6. Insert RE treated gene to RE treated vector -> Ligation -> E.coli transformation, raise, prep -> Loading (2 d) – Team
  7. Sequencing (3 d) – Bioneer
  8. Yeast transformation (1 d) – Bioneer
  9. Yeast growth (1 week) – Bioneer
  10. Confirm result (2 d) - Team


cf) TA cloning
For safer storage and confirmation purpose
Insert RE treated gene to TA cloning vector -> Ligation -> E.coli transformation -> Prep -> Loading (2 d) – team  

PCR

  To manipulate gene products obtained from gene-bank, our team used PCR/Real-Time PCR methods. Commercially obtained genes contain few more base pairs added at front and back site. As for FGPR, the receptor protein of human has human-specific signal peptide at its starting point, and this region had to be replaced by S.pombe specific signal peptide to express the protein at membrane region. To do this, PCR primers containing signal peptide region of S.pombe were synthesized by method describeds below. Then, FGPR gene was amplified by PCR to get gene product whose signal region is replaced. Also, additional sequence at rear site of gene was removed. STAT gene went through similar process; removing additional region.

  PCR was done by commercial service sponsored by Bioneer Inc. (Korea), using AccuPower PCR system supplied by same company (referenced below).


Oligo Synthesis

  Oligo-synthesis was supported by Bioneer.
  We requested synthesis of fusion antibody gene that is mainly used in our project.
  Process of oligo-synthesis by Bioneer is summarized below.

  Codon optimization Oligo Design S/W

  • High-efficient optimiztion software made Bioinformatics technology of KAIST.

  Mega-base Oligo Synthesizer

  • Mass oligo synthesizer which can synthesize 25 million base pair of oligonucleotide.


  In addition, through the following processes, Bioneer completed our oligo-synthesis perfectly.

  Sequencing Service

  • High-accuracy sequencing service

  AccuRapid Cell-Free Protein Expression Kit

  • Cell free protein expression system

  Gene Synthesis Kit

  • The world’s first one-stop gene synthesis kit




Homologous Recombination

  Homologous recombination is a type of genetic recombination in which nucleotide sequences are exchanged between two similar or identical molecules of DNA. It is most widely used by cells to accurately repair harmful breaks that occur on both strands of DNA, known as double-strand breaks. Homologous recombination also produces new combinations of DNA sequences during meiosis, the process performed by many eukaryotes like animals and plants: production of sperm and egg cells. These new combinations of DNA promote genetic variations in offspring, which in turn enable populations to evolve. Homologous recombination is also used in horizontal gene transfer to exchange genetic material between different strains and species of bacteria and viruses.

Homologus-KAIST.jpg


  We use this technique to generate the yeast S. pombe that we want. Diploid deletion mutants in the S. pombe genome were systematically constructed with targeted mutagenesis at each target ORF. The chromosomal location of the ORFs and their DNA sequence information were obtained from the public fission yeast database at the Welcome Trust Sanger Institute. The deletion cassette module contains a selection marker (Fig. 1), tag sequences (molecular barcodes), and the sequences for homologous recombination (Fig 2). The deletion cassette modules were constructed by PCR with well-designed primers. The cassettes were transformed into the S. pombe, SP286 diploid host strain (h+/ h+, ade6-M210/ade6-M216 ura4-D18/ura4-D18 leu1-32/leu1-32). The result was screened; deletion of the target ORF was confirmed by G418 antibiotic selection (Fig 3). If chromosomal integration occurs properly via homologous recombination at the target ORF in a colony, that colony would obtain antibiotic resistance from the KanMX4 selection marker gene.



References

Bioneer PCR service:
http://www.bioneer.co.kr/product/product_sub.jsp?pclassCode=1

Bioneer Oligo sythetis service
Put reference list here