Team:Cambridge/Quiescence

From 2010.igem.org

(Difference between revisions)
(Quiescence)
Line 8: Line 8:
Rcd does not have a recognizable terminator, but still seems to terminate properly. The RNA is unusually stable with a half-life of ~70 to 90 minutes. One problem encountered in culturing commercial Q-cells is that it is very difficult to fully stop the expression of Rcd. Small amounts of Rcd in the cell can slow the cell cycle down, creating an evolutionary incentive to become resistant to Rcd. Thus, cells that have been grown with a repressed Rcd gene, will lose the capability to become quiescent over time. [http://aem.asm.org/cgi/reprint/65/6/2710 Rowe and Summers 1999] achieved a functional quiescence system by putting the Rcd gene under a promoter repressed by a temperature sensitive form of Phage lambda cI repressor. This promoter system was the only one they could find that provided sufficient suppression.
Rcd does not have a recognizable terminator, but still seems to terminate properly. The RNA is unusually stable with a half-life of ~70 to 90 minutes. One problem encountered in culturing commercial Q-cells is that it is very difficult to fully stop the expression of Rcd. Small amounts of Rcd in the cell can slow the cell cycle down, creating an evolutionary incentive to become resistant to Rcd. Thus, cells that have been grown with a repressed Rcd gene, will lose the capability to become quiescent over time. [http://aem.asm.org/cgi/reprint/65/6/2710 Rowe and Summers 1999] achieved a functional quiescence system by putting the Rcd gene under a promoter repressed by a temperature sensitive form of Phage lambda cI repressor. This promoter system was the only one they could find that provided sufficient suppression.
 +
 +
==h-ns mutants==
 +
This system of inducing quiescence only seems to work in specific h-ns mutant strains. H-NS is a nucleoid protein composed of a DNA binding and a regulatory domain, that usually acts as a transcriptional repressor. Mutants have a condensed chromosome, show higher expression of some genes, are non-motile and mucoidal. We have been kindly provided with a selection of h-ns mutant strains by Dr Rowe.
==The aptamer-controlled-ribozyme approach==
==The aptamer-controlled-ribozyme approach==
Line 13: Line 16:
A new approach to making a quiescence switch would be to control the functionality of the folded RNA instead of its transcription, which proved to be problematic. Ideally the bacteria would grow in the lab or a vat in the presence of a ligand but would stop growing without dying, as soon as the ligand is removed. Thus if the engineered bacteria escaped into the wild they would stop growing very quickly as the ligand is diluted.  
A new approach to making a quiescence switch would be to control the functionality of the folded RNA instead of its transcription, which proved to be problematic. Ideally the bacteria would grow in the lab or a vat in the presence of a ligand but would stop growing without dying, as soon as the ligand is removed. Thus if the engineered bacteria escaped into the wild they would stop growing very quickly as the ligand is diluted.  
-
We hope to achieve this by rationally designing a gene for an RNA that folds into a non-functional shape. The structure will include a hammerhead ribozyme domain that will hopefully cleave itself in vivo to release the functional Rcd RNA. In order to control this cleavage, the final construct would include an aptamer, which is an RNA structure able to bind a specific compound. This would create an allosteric ribozyme.
+
We hope to achieve this by rationally designing a gene for an RNA that folds into a non-functional shape. The structure will include a hammerhead ribozyme domain (see [[http://sage.ucsc.edu/scottlab/reprints/2006_Scott_Cell_pdf/2006_Scott_Cell.pdf Martick and Scott 2006]]) that will hopefully cleave itself in vivo to release the functional Rcd RNA. In order to control this cleavage, the final construct would include an aptamer, which is an RNA structure able to bind a specific compound. This would create an allosteric ribozyme.
The project would involve synthesising different constructs (which are all mercifully short) and testing their functionality and sensitivity. The result would be a fairly short, but quite versatile BioBrick.
The project would involve synthesising different constructs (which are all mercifully short) and testing their functionality and sensitivity. The result would be a fairly short, but quite versatile BioBrick.
Line 25: Line 28:
==Intellectual Property==
==Intellectual Property==
Using Rcd in the H-NS mutant to induce quiescence in E.coli is the Intellectual Property of Cambridge Microbial technologies. Dr Summers has been very supportive and we are going to continue the project. However, the legal issues have not been completely resolved yet. We still need to talk to Robert Hulme, the co-holder of the patent.  
Using Rcd in the H-NS mutant to induce quiescence in E.coli is the Intellectual Property of Cambridge Microbial technologies. Dr Summers has been very supportive and we are going to continue the project. However, the legal issues have not been completely resolved yet. We still need to talk to Robert Hulme, the co-holder of the patent.  
-
 
-
 
{{:Team:Cambridge/Templates/footer}}
{{:Team:Cambridge/Templates/footer}}

Revision as of 12:07, 28 July 2010