Team:Aberdeen Scotland/Project
From 2010.igem.org
(→Overall project) |
(→Overall project) |
||
Line 47: | Line 47: | ||
== '''Overall project''' == | == '''Overall project''' == | ||
'' | '' | ||
- | + | Bio-traffic light systems; engineering toggle switches in yeast using translational control of gene expression | |
This synthetic biology project will engineer a novel gene circuit allowing yeast to express either a green, or cyan fluorescent protein, in a stable, mutually exclusive way, thus exhibiting toggle switch control of expression. Exposure of yeast to specific environmental signals will switch between the fluorescent proteins. In contrast to existing genetic toggle switches, employing transcriptional control to achieve regulation, this project will achieve the same control principle by engineering a translational regulation circuit in a model eukaryote. A key advantage of translational control is that it enables a more rapid regulation of protein levels since it by-passes mRNA synthesis and export. Translationally regulated toggle switches could have multiple applications, stably recording exposure to environmental triggers, or in long-term maintenance of therapeutic protein synthesis. | This synthetic biology project will engineer a novel gene circuit allowing yeast to express either a green, or cyan fluorescent protein, in a stable, mutually exclusive way, thus exhibiting toggle switch control of expression. Exposure of yeast to specific environmental signals will switch between the fluorescent proteins. In contrast to existing genetic toggle switches, employing transcriptional control to achieve regulation, this project will achieve the same control principle by engineering a translational regulation circuit in a model eukaryote. A key advantage of translational control is that it enables a more rapid regulation of protein levels since it by-passes mRNA synthesis and export. Translationally regulated toggle switches could have multiple applications, stably recording exposure to environmental triggers, or in long-term maintenance of therapeutic protein synthesis. | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
'' | '' | ||
Revision as of 11:21, 16 July 2010
You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing. | |
Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs) | |
Team Example |
Home | Team | Official Team Profile | Project | Parts Submitted to the Registry | Modeling | Notebook | Safety |
---|
Contents |
Overall project
Bio-traffic light systems; engineering toggle switches in yeast using translational control of gene expression
This synthetic biology project will engineer a novel gene circuit allowing yeast to express either a green, or cyan fluorescent protein, in a stable, mutually exclusive way, thus exhibiting toggle switch control of expression. Exposure of yeast to specific environmental signals will switch between the fluorescent proteins. In contrast to existing genetic toggle switches, employing transcriptional control to achieve regulation, this project will achieve the same control principle by engineering a translational regulation circuit in a model eukaryote. A key advantage of translational control is that it enables a more rapid regulation of protein levels since it by-passes mRNA synthesis and export. Translationally regulated toggle switches could have multiple applications, stably recording exposure to environmental triggers, or in long-term maintenance of therapeutic protein synthesis.