Team:ETHZ Basel
From 2010.igem.org
Line 3: | Line 3: | ||
---- | ---- | ||
- | '''E | + | '''E. lemming''' |
ETHZ Basel project goal is to control E. coli movements (chemotaxis) | ETHZ Basel project goal is to control E. coli movements (chemotaxis) | ||
Line 12: | Line 12: | ||
ways, E. coli tumbling is induced or removed just by pressing a light | ways, E. coli tumbling is induced or removed just by pressing a light | ||
switch and, as a consequence, a bacterium can be "driven" to a | switch and, as a consequence, a bacterium can be "driven" to a | ||
- | precise, pre-fixed point. Tumbling / directed flagellar movement rates are supervised by image processing algorithms, which are linked to the light-pulse generator. This system enables to control single E.coli cells to move like mindless "Lemmings" in the direction they are forced to go. | + | precise, pre-fixed point. Tumbling / directed flagellar movement rates are supervised by image processing algorithms, which are linked to the light-pulse generator. This system enables to control single E. coli cells to move like mindless "Lemmings" in the direction they are forced to go. |
+ | [[Image:setup.jpg}|{none|alt="Setup of the control of E. coli chemotaxis by light."}|{Figure 1. Setup to control E. Coli movements. An automatized microscope images the E. lemming. A connected computer system detects and tracks the cells. The direction of movement of the E. lemming is compared to the desired direction defined by the user, e.g. with a joystick. If the direction of movement deviates too much from the desired direction, the digital controller induces tumbling by sending a red light pulse. Otherwise, tumbling is repressed by sending a far-red light pulse.}]] | ||
<!--- Old version | <!--- Old version |
Revision as of 09:34, 15 July 2010
Project abstract
E. lemming
ETHZ Basel project goal is to control E. coli movements (chemotaxis) by means of light. In fact, we will change the chemotaxis pathway either by substituting the receptor with a light-sensitive one or by interfering with the kinase-phosphatase process with proteins whose binding and unbinding can be stimulated by pulses of light. In both ways, E. coli tumbling is induced or removed just by pressing a light switch and, as a consequence, a bacterium can be "driven" to a precise, pre-fixed point. Tumbling / directed flagellar movement rates are supervised by image processing algorithms, which are linked to the light-pulse generator. This system enables to control single E. coli cells to move like mindless "Lemmings" in the direction they are forced to go.
[[Image:setup.jpg}|{none|alt="Setup of the control of E. coli chemotaxis by light."}|{Figure 1. Setup to control E. Coli movements. An automatized microscope images the E. lemming. A connected computer system detects and tracks the cells. The direction of movement of the E. lemming is compared to the desired direction defined by the user, e.g. with a joystick. If the direction of movement deviates too much from the desired direction, the digital controller induces tumbling by sending a red light pulse. Otherwise, tumbling is repressed by sending a far-red light pulse.}]]
Home | Team | Official Team Profile | Project | Parts Submitted to the Registry | Modeling | Notebook | Safety |
---|