Team:ESBS-Strasbourg/Project/Reference

From 2010.igem.org

(Difference between revisions)
Line 498: Line 498:
<font>
<font>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[1] Baker, T. A., R. T. Sauer, et al. </span>
+
[1] Bae, G., G. Choi </span>
-
<span>(2009).  
+
<span>(2009).&quot;Decoding of light signals by plant phytochromes and their interacting proteins.&quot; <u>Annu Rev Plant Biol </u><b>59</b>:281-311.</span></p></li>
-
&quot;Engineering synthetic adaptors and substrates for controlled ClpXP
+
-
degradation.&quot; <u>J Biol Chem </u><b>284</b>(33): 21848-55.</span></p></li>
+
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
[2] Baker, T. A., R. T. Sauer, et al. </span>
[2] Baker, T. A., R. T. Sauer, et al. </span>
 +
<span>(2009).&quot;Engineering synthetic adaptors and substrates for controlled ClpXP
 +
degradation.&quot; <u>J Biol Chem </u><b>284</b>(33): 21848-55.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[3] Baker, T. A., R. T. Sauer, et al. </span>
<span>(2009).  
<span>(2009).  
&quot;Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a  
&quot;Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a  
AAA+ protein-unfolding machine.&quot; <u>Cell</u> <b>139</b>(4): 744-56.</span></p></li>
AAA+ protein-unfolding machine.&quot; <u>Cell</u> <b>139</b>(4): 744-56.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[3] Baker, T. A., R. T. Sauer, et al. </span>
+
[4] Baker, T. A., R. T. Sauer, et al. </span>
<span>(2010).  
<span>(2010).  
&quot;Control of substrate gating and translocation into ClpP by channel residues and  
&quot;Control of substrate gating and translocation into ClpP by channel residues and  
ClpX binding.&quot; <u>J Mol Biol</u> <b>399</b>(5): 707-18.</span></p></li>
ClpX binding.&quot; <u>J Mol Biol</u> <b>399</b>(5): 707-18.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[5] Baker,  
-
<li><p ALIGN="LEFT">[4] Baker,  
+
T. A., R. T. Sauer, et al. (2005). &quot;Versatile modes of peptide recognition by  
T. A., R. T. Sauer, et al. (2005). &quot;Versatile modes of peptide recognition by  
the AAA+ adaptor protein SspB.&quot; <u>Nat Struct Mol Biol</u> <b>12</b>(6): 520-5.</span></p></li>
the AAA+ adaptor protein SspB.&quot; <u>Nat Struct Mol Biol</u> <b>12</b>(6): 520-5.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[6] Baker,  
-
<li><p ALIGN="LEFT">[5] Baker,  
+
T. A., R. T. Sauer, et al. (2005). &quot;Rebuilt AAA + motors reveal operating  
T. A., R. T. Sauer, et al. (2005). &quot;Rebuilt AAA + motors reveal operating  
principles for ATP-fuelled machines.&quot; </span><u>
principles for ATP-fuelled machines.&quot; </span><u>
Line 524: Line 524:
<b>437</b>(7062): 1115-20.</span></p></li>
<b>437</b>(7062): 1115-20.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[6] Baker, T. A., R. T. Sauer, et al. </span>
+
[7] Baker, T. A., R. T. Sauer, et al. </span>
<span>(2006).  
<span>(2006).  
&quot;Engineering controllable protein degradation.&quot; <u>Mol Cell</u> <b>22</b>(5):  
&quot;Engineering controllable protein degradation.&quot; <u>Mol Cell</u> <b>22</b>(5):  
701-7.</span></p></li>
701-7.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[7] Baker, T. A., R. T. Sauer, et al. </span>
+
[8] Baker, T. A., R. T. Sauer, et al. </span>
<span>(2007).  
<span>(2007).  
&quot;Altered tethering of the SspB adaptor to the ClpXP protease causes changes in  
&quot;Altered tethering of the SspB adaptor to the ClpXP protease causes changes in  
substrate delivery.&quot; <u>J Biol Chem</u> <b>282</b>(15): 11465-73.</span></p></li>
substrate delivery.&quot; <u>J Biol Chem</u> <b>282</b>(15): 11465-73.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[8] Deisseroth, K., F. Zhang, et al. </span>
+
[9] Deisseroth, K., F. Zhang, et al. </span>
<span>(2006).  
<span>(2006).  
&quot;Channelrhodopsin-2 and optical control of excitable cells.&quot; <u>Nat Methods</u>
&quot;Channelrhodopsin-2 and optical control of excitable cells.&quot; <u>Nat Methods</u>
<b>3</b>(10): 785-92.</span></p></li>
<b>3</b>(10): 785-92.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[10]  
-
<li><p ALIGN="LEFT">[9]  
+
Fussenegger, M., M. Tigges, et al. (2009). &quot;A tunable synthetic mammalian  
Fussenegger, M., M. Tigges, et al. (2009). &quot;A tunable synthetic mammalian  
oscillator.&quot; <u>Nature</u> <b>457</b>(7227): 309-12.</span></p></li>
oscillator.&quot; <u>Nature</u> <b>457</b>(7227): 309-12.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[11]  
-
<li><p ALIGN="LEFT">[10]  
+
Goldberg, A. L. (2003). &quot;Protein degradation and protection against misfolded or  
Goldberg, A. L. (2003). &quot;Protein degradation and protection against misfolded or  
damaged proteins.&quot; </span><u>
damaged proteins.&quot; </span><u>
Line 549: Line 547:
Nature</span></u><span>
Nature</span></u><span>
<b>426</b>(6968): 895-9.</span></p></li>
<b>426</b>(6968): 895-9.</span></p></li>
-
<p>
+
<span>[12] Gregersen, N., C. B.  
-
<span>[11] Gregersen, N., C. B.  
+
Pedersen, et al. </span>
Pedersen, et al. </span>
<span>(2003).  
<span>(2003).  
Line 556: Line 553:
pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency.&quot; <u>J Biol  
pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency.&quot; <u>J Biol  
Chem</u> <b>278</b>(48): 47449-58.</span></p></li>
Chem</u> <b>278</b>(48): 47449-58.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[13]  
-
<li><p ALIGN="LEFT">[12]  
+
Grossman, A. D. and K. L. Griffith (2008). &quot;Inducible protein degradation in  
Grossman, A. D. and K. L. Griffith (2008). &quot;Inducible protein degradation in  
Bacillus subtilis using heterologous peptide tags and adaptor proteins to target  
Bacillus subtilis using heterologous peptide tags and adaptor proteins to target  
substrates to the protease ClpXP.&quot; <u>Mol Microbiol</u> <b>70</b>(4): 1012-25.</span></p></li>
substrates to the protease ClpXP.&quot; <u>Mol Microbiol</u> <b>70</b>(4): 1012-25.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[14]  
-
<li><p ALIGN="LEFT">[13]  
+
Houry, W. A., U. A. Wojtyra, et al. (2003). &quot;The N-terminal zinc binding domain  
Houry, W. A., U. A. Wojtyra, et al. (2003). &quot;The N-terminal zinc binding domain  
of ClpX is a dimerization domain that modulates the chaperone function.&quot; <u>J  
of ClpX is a dimerization domain that modulates the chaperone function.&quot; <u>J  
Biol Chem</u> <b>278</b>(49): 48981-90.</span></p></li>
Biol Chem</u> <b>278</b>(49): 48981-90.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[14] Hughes, J., F. T. Landgraf, et al. </span>
+
[15] Hughes, J., F. T. Landgraf, et al. </span>
<span>(2001).  
<span>(2001).  
&quot;Recombinant holophytochrome in Escherichia coli.&quot; <u>FEBS Lett</u> <b>508</b>(3):  
&quot;Recombinant holophytochrome in Escherichia coli.&quot; <u>FEBS Lett</u> <b>508</b>(3):  
459-62.</span></p></li>
459-62.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[16]  
-
<li><p ALIGN="LEFT">[15]  
+
Isacoff, E. Y. and P. Gorostiza (2008). &quot;Optical switches for remote and  
Isacoff, E. Y. and P. Gorostiza (2008). &quot;Optical switches for remote and  
noninvasive control of cell signaling.&quot; <u>Science</u> <b>322</b>(5900): 395-9.</span></p></li>
noninvasive control of cell signaling.&quot; <u>Science</u> <b>322</b>(5900): 395-9.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[16] Kohchi, T., K. Mukougawa, et al. </span>
+
[17] Kohchi, T., K. Mukougawa, et al. </span>
<span>(2006).  
<span>(2006).  
&quot;Metabolic engineering to produce phytochromes with phytochromobilin,  
&quot;Metabolic engineering to produce phytochromes with phytochromobilin,  
phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli.&quot; <u>FEBS  
phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli.&quot; <u>FEBS  
Lett</u> <b>580</b>(5): 1333-8.</span></p></li>
Lett</u> <b>580</b>(5): 1333-8.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[18]  
-
<li><p ALIGN="LEFT">[17]  
+
Kohchi, T., K. Mukougawa, et al. (2006). &quot;Metabolic engineering to produce  
Kohchi, T., K. Mukougawa, et al. (2006). &quot;Metabolic engineering to produce  
phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin  
phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin  
chromophore in Escherichia coli.&quot; <u>FEBS Lett</u> <b>580</b>(5): 1333-8.</span></p></li>
chromophore in Escherichia coli.&quot; <u>FEBS Lett</u> <b>580</b>(5): 1333-8.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[19]  
-
<li><p ALIGN="LEFT">[18]  
+
Lagarias, J. C. and G. A. Gambetta (2001). &quot;Genetic engineering of phytochrome  
Lagarias, J. C. and G. A. Gambetta (2001). &quot;Genetic engineering of phytochrome  
biosynthesis in bacteria.&quot; <u>Proc Natl Acad Sci U S A</u> <b>98</b>(19):  
biosynthesis in bacteria.&quot; <u>Proc Natl Acad Sci U S A</u> <b>98</b>(19):  
10566-71.</span></p></li>
10566-71.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[20]  
-
<li><p ALIGN="LEFT">[19]  
+
Lagarias, J. C., N. C. Rockwell, et al. (2006). &quot;Phytochrome structure and  
Lagarias, J. C., N. C. Rockwell, et al. (2006). &quot;Phytochrome structure and  
&nbsp;signaling mechanisms.&quot; </span><u>
&nbsp;signaling mechanisms.&quot; </span><u>
Line 598: Line 589:
Annu Rev Plant Biol</span></u><span>
Annu Rev Plant Biol</span></u><span>
<b>57</b>: 837-58.</span></p></li>
<b>57</b>: 837-58.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[21]  
-
<li><p ALIGN="LEFT">[20]  
+
Lagarias, J.C., M.T. McDowell (2002). &quot;Analysis and reconstitution of  
Lagarias, J.C., M.T. McDowell (2002). &quot;Analysis and reconstitution of  
phytochromes.&quot; <u>Heme, Chlorophyll, and Bilins: Methods and Protocols</u>,  
phytochromes.&quot; <u>Heme, Chlorophyll, and Bilins: Methods and Protocols</u>,  
293-309</span></p></li>
293-309</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[22]  
-
<li><p ALIGN="LEFT">[21]  
+
Maurizi, M. R., R. Grimaud, et al. (1998). &quot;Enzymatic and structural  
Maurizi, M. R., R. Grimaud, et al. (1998). &quot;Enzymatic and structural  
similarities between the Escherichia coli ATP-dependent proteases, ClpXP and  
similarities between the Escherichia coli ATP-dependent proteases, ClpXP and  
ClpAP.&quot; <u>J Biol Chem</u> <b>273</b>(20): 12476-81.</span></p></li>
ClpAP.&quot; <u>J Biol Chem</u> <b>273</b>(20): 12476-81.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[23]  
-
<li><p ALIGN="LEFT">[22]  
+
Millar, A. J., O. Sorokina, et al. (2009). &quot;A switchable light-input,  
Millar, A. J., O. Sorokina, et al. (2009). &quot;A switchable light-input,  
light-output system modelled and constructed in yeast.&quot; <u>J Biol Eng</u> <b>3</b>:  
light-output system modelled and constructed in yeast.&quot; <u>J Biol Eng</u> <b>3</b>:  
15.</span></p></li>
15.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[24]  
-
<li><p ALIGN="LEFT">[23]  
+
Moffat, K. and A. Moglich (2010). &quot;Engineered photoreceptors as novel  
Moffat, K. and A. Moglich (2010). &quot;Engineered photoreceptors as novel  
optogenetic tools.&quot; <u>Photochem Photobiol Sci</u> <b>9</b>(10): 1286-300.</span></p></li>
optogenetic tools.&quot; <u>Photochem Photobiol Sci</u> <b>9</b>(10): 1286-300.</span></p></li>
-
<p>
+
<span>[25] Moffat, K., A. Moglich, et  
-
<span>[24] Moffat, K., A. Moglich, et  
+
al. </span>
al. </span>
<span>(2010).  
<span>(2010).  
&quot;Structure and function of plant photoreceptors.&quot; <u>Annu Rev Plant Biol</u> <b>
&quot;Structure and function of plant photoreceptors.&quot; <u>Annu Rev Plant Biol</u> <b>
61</b>: 21-47.</span></p></li>
61</b>: 21-47.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[26]  
-
<li><p ALIGN="LEFT">[25]  
+
Moroder, L. and C. Renner (2006). &quot;Azobenzene as conformational switch in model  
Moroder, L. and C. Renner (2006). &quot;Azobenzene as conformational switch in model  
peptides.&quot; <u>Chembiochem</u> <b>7</b>(6): 868-78.</span></p></li>
peptides.&quot; <u>Chembiochem</u> <b>7</b>(6): 868-78.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[27]  
-
<li><p ALIGN="LEFT">[26]  
+
Morrison, D. A. and S. Ahlawat (2009). &quot;ClpXP degrades SsrA-tagged proteins in  
Morrison, D. A. and S. Ahlawat (2009). &quot;ClpXP degrades SsrA-tagged proteins in  
Streptococcus pneumoniae.&quot; </span><u>
Streptococcus pneumoniae.&quot; </span><u>
Line 634: Line 618:
J Bacteriol</span></u><span>
J Bacteriol</span></u><span>
<b>191</b>(8): 2894-8.</span></p></li>
<b>191</b>(8): 2894-8.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[28] Muir,  
-
<li><p ALIGN="LEFT">[27] Muir,  
+
T. W. and A. B. Tyszkiewicz (2008). &quot;Activation of protein splicing with light  
T. W. and A. B. Tyszkiewicz (2008). &quot;Activation of protein splicing with light  
in yeast.&quot; <u>Nat Methods</u> <b>5</b>(4): 303-5.</span></p></li>
in yeast.&quot; <u>Nat Methods</u> <b>5</b>(4): 303-5.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[29]  
-
<li><p ALIGN="LEFT">[28]  
+
Quail, P. H. (2002). &quot;Phytochrome photosensory signalling networks.&quot; <u>Nat Rev  
Quail, P. H. (2002). &quot;Phytochrome photosensory signalling networks.&quot; <u>Nat Rev  
Mol Cell Biol</u> <b>3</b>(2): 85-93.</span></p></li>
Mol Cell Biol</u> <b>3</b>(2): 85-93.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[29] Quail, P. H., R. Khanna, et al. </span>
+
[30] Quail, P. H., R. Khanna, et al. </span>
<span>(2004). &quot;A  
<span>(2004). &quot;A  
novel molecular recognition motif necessary for targeting photoactivated  
novel molecular recognition motif necessary for targeting photoactivated  
Line 649: Line 631:
<u>Plant Cell</u> <b>16</b>(11): 3033-44.</span></p></li>
<u>Plant Cell</u> <b>16</b>(11): 3033-44.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[30] Quail, P. H., E. Schafer, et al. </span>
+
[31] Quail, P. H., E. Schafer, et al. </span>
<span>(2006). &quot;Photoactivated  
<span>(2006). &quot;Photoactivated  
phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated  
phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated  
Line 657: Line 639:
<b>23</b>(3): 439-46.</span></p></li>
<b>23</b>(3): 439-46.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[31] Quail, P. H., S. Shimizu-Sato, et al. </span>
+
[32] Quail, P. H., S. Shimizu-Sato, et al. </span>
<span>(2002). &quot;A  
<span>(2002). &quot;A  
light-switchable gene promoter system.&quot; <u>Nat Biotechnol</u> <b>20</b>(10):  
light-switchable gene promoter system.&quot; <u>Nat Biotechnol</u> <b>20</b>(10):  
1041-4.</span></p></li>
1041-4.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">
-
<li><p ALIGN="LEFT">[32]  
+
[33] Quail PH., D. Wagner et al. (1996) &quot;Two small spatially distinct regions of phytochrome B are required for efficient signaling rates.&quot; <u>Plant Cell</u> <b>8</b>:859–71.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[34] Park Y., H. Song (2008) &quot;A degradation signal recognition in prokaryotes.&quot; <u>J. Synchrotron Rad</u><b>15</b>:246–249.</span></p></li>
 +
<li><p ALIGN="LEFT">[35]  
Rosen, M. K., D. W. Leung, et al. (2008). &quot;Genetically encoded photoswitching of  
Rosen, M. K., D. W. Leung, et al. (2008). &quot;Genetically encoded photoswitching of  
actin assembly through the Cdc42-WASP-Arp2/3 complex pathway.&quot; <u>Proc Natl Acad  
actin assembly through the Cdc42-WASP-Arp2/3 complex pathway.&quot; <u>Proc Natl Acad  
Sci U S A</u> <b>105</b>(35): 12797-802.</span></p></li>
Sci U S A</u> <b>105</b>(35): 12797-802.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT"><span>[36] Schafer, E., T. Kunkel, et  
-
<li><p ALIGN="LEFT"><span>[33] Schafer, E., T. Kunkel, et  
+
al. </span>
al. </span>
<span>(1993).  
<span>(1993).  
&quot;In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco  
&quot;In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco  
apophytochrome B.&quot; <u>Eur J Biochem</u> <b>215</b>(3): 587-94.</span></p></li>
apophytochrome B.&quot; <u>Eur J Biochem</u> <b>215</b>(3): 587-94.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT"><span>[37] Schaffner, K., C. Hill, et  
-
<li><p ALIGN="LEFT"><span>[34] Schaffner, K., C. Hill, et  
+
al. </span>
al. </span>
<span>(1994).  
<span>(1994).  
Line 679: Line 662:
formation of photoactive chromoproteins by assembly with phycocyanobilin.&quot; <u>
formation of photoactive chromoproteins by assembly with phycocyanobilin.&quot; <u>
Eur J Biochem</u> <b>223</b>(1): 69-77.</span></p></li>
Eur J Biochem</u> <b>223</b>(1): 69-77.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[38]  
-
<li><p ALIGN="LEFT">[35]  
+
Sejnowski, T. J. and M. U. Gillette (2005). &quot;Physiology. Biological clocks  
Sejnowski, T. J. and M. U. Gillette (2005). &quot;Physiology. Biological clocks  
coordinately keep life on time.&quot; </span><u>
coordinately keep life on time.&quot; </span><u>
Line 686: Line 668:
Science</span></u><span>
Science</span></u><span>
<b>309</b>(5738): 1196-8.</span></p></li>
<b>309</b>(5738): 1196-8.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[39]  
-
<li><p ALIGN="LEFT">[36]  
+
Sharrock, R. A. (2008). &quot;The phytochrome red/far-red photoreceptor superfamily.&quot;
Sharrock, R. A. (2008). &quot;The phytochrome red/far-red photoreceptor superfamily.&quot;
<u>Genome Biol</u> <b>9</b>(8): 230.</span></p></li>
<u>Genome Biol</u> <b>9</b>(8): 230.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[40] Su,  
-
<li><p ALIGN="LEFT">[37] Su,  
+
Z., H. Li, et al. (2010). &quot;A protease-based strategy for the controlled release  
Z., H. Li, et al. (2010). &quot;A protease-based strategy for the controlled release  
of therapeutic peptides.&quot; <u>Angew Chem Int Ed Engl</u> <b>49</b>(29): 4930-3.</span></p></li>
of therapeutic peptides.&quot; <u>Angew Chem Int Ed Engl</u> <b>49</b>(29): 4930-3.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[41]  
-
<li><p ALIGN="LEFT">[38]  
+
Voigt, C. A., A. Levskaya, et al. (2005). &quot;Synthetic biology: engineering  
Voigt, C. A., A. Levskaya, et al. (2005). &quot;Synthetic biology: engineering  
Escherichia coli to see light.&quot; </span><u>
Escherichia coli to see light.&quot; </span><u>
Line 702: Line 681:
<b>438</b>(7067): 441-2.</span></p></li>
<b>438</b>(7067): 441-2.</span></p></li>
<li><p ALIGN="LEFT">
<li><p ALIGN="LEFT">
-
[39] Voigt, C. A., A. Levskaya, et al. </span>
+
[42] Voigt, C. A., A. Levskaya, et al. </span>
<span>(2009).  
<span>(2009).  
&quot;Spatiotemporal control of cell signaling using a light-switchable protein  
&quot;Spatiotemporal control of cell signaling using a light-switchable protein  
interaction.&quot; <u>Nature</u> <b>461</b>(7266): 997-1001.</span></p></li>
interaction.&quot; <u>Nature</u> <b>461</b>(7266): 997-1001.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[43]  
-
<li><p ALIGN="LEFT">[40]  
+
Weaver, D. R. and S. M. Reppert (1997). &quot;Forward genetic approach strikes gold:  
Weaver, D. R. and S. M. Reppert (1997). &quot;Forward genetic approach strikes gold:  
cloning of a mammalian clock gene.&quot; </span><u>
cloning of a mammalian clock gene.&quot; </span><u>
Line 713: Line 691:
Cell</span></u><span>
Cell</span></u><span>
<b>89</b>(4): 487-90.</span></p></li>
<b>89</b>(4): 487-90.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">[44]
-
<li><p ALIGN="LEFT">[41]
+
</span>
</span>
<span>Weitz, C. J., K. F.  
<span>Weitz, C. J., K. F.  
Line 721: Line 698:
&quot;Extensive and divergent circadian gene expression in liver and heart.&quot; <u>
&quot;Extensive and divergent circadian gene expression in liver and heart.&quot; <u>
Nature</u> <b>417</b>(6884): 78-83.</span></p></li>
Nature</u> <b>417</b>(6884): 78-83.</span></p></li>
-
<p>
+
<li><p ALIGN="LEFT">
-
<li><p ALIGN="LEFT">[42]
+
[45] Wu SH., JC. Lagarias JC. (2000) &quot;Defining the bilin lyase domain: lessons from the extended phytochrome superfamily.&quot; <u>Biochemistry</u><b>39</b>:13487–95.</span></p></li>
 +
<li><p ALIGN="LEFT">[46]
</span>
</span>
<span>Zuber, P. and Y.  
<span>Zuber, P. and Y.  

Revision as of 21:32, 27 October 2010

{|

ESBS - Strasbourg


References
  
Let me guide you

References

  • [1] Bae, G., G. Choi (2009)."Decoding of light signals by plant phytochromes and their interacting proteins." Annu Rev Plant Biol 59:281-311.

  • [2] Baker, T. A., R. T. Sauer, et al. (2009)."Engineering synthetic adaptors and substrates for controlled ClpXP degradation." J Biol Chem 284(33): 21848-55.

  • [3] Baker, T. A., R. T. Sauer, et al. (2009). "Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine." Cell 139(4): 744-56.

  • [4] Baker, T. A., R. T. Sauer, et al. (2010). "Control of substrate gating and translocation into ClpP by channel residues and ClpX binding." J Mol Biol 399(5): 707-18.

  • [5] Baker, T. A., R. T. Sauer, et al. (2005). "Versatile modes of peptide recognition by the AAA+ adaptor protein SspB." Nat Struct Mol Biol 12(6): 520-5.

  • [6] Baker, T. A., R. T. Sauer, et al. (2005). "Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines." Nature 437(7062): 1115-20.

  • [7] Baker, T. A., R. T. Sauer, et al. (2006). "Engineering controllable protein degradation." Mol Cell 22(5): 701-7.

  • [8] Baker, T. A., R. T. Sauer, et al. (2007). "Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery." J Biol Chem 282(15): 11465-73.

  • [9] Deisseroth, K., F. Zhang, et al. (2006). "Channelrhodopsin-2 and optical control of excitable cells." Nat Methods 3(10): 785-92.

  • [10] Fussenegger, M., M. Tigges, et al. (2009). "A tunable synthetic mammalian oscillator." Nature 457(7227): 309-12.

  • [11] Goldberg, A. L. (2003). "Protein degradation and protection against misfolded or damaged proteins." Nature 426(6968): 895-9.

  • [12] Gregersen, N., C. B. Pedersen, et al. (2003). "Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency." J Biol Chem 278(48): 47449-58.

  • [13] Grossman, A. D. and K. L. Griffith (2008). "Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP." Mol Microbiol 70(4): 1012-25.

  • [14] Houry, W. A., U. A. Wojtyra, et al. (2003). "The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function." J Biol Chem 278(49): 48981-90.

  • [15] Hughes, J., F. T. Landgraf, et al. (2001). "Recombinant holophytochrome in Escherichia coli." FEBS Lett 508(3): 459-62.

  • [16] Isacoff, E. Y. and P. Gorostiza (2008). "Optical switches for remote and noninvasive control of cell signaling." Science 322(5900): 395-9.

  • [17] Kohchi, T., K. Mukougawa, et al. (2006). "Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli." FEBS Lett 580(5): 1333-8.

  • [18] Kohchi, T., K. Mukougawa, et al. (2006). "Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli." FEBS Lett 580(5): 1333-8.

  • [19] Lagarias, J. C. and G. A. Gambetta (2001). "Genetic engineering of phytochrome biosynthesis in bacteria." Proc Natl Acad Sci U S A 98(19): 10566-71.

  • [20] Lagarias, J. C., N. C. Rockwell, et al. (2006). "Phytochrome structure and  signaling mechanisms." Annu Rev Plant Biol 57: 837-58.

  • [21] Lagarias, J.C., M.T. McDowell (2002). "Analysis and reconstitution of phytochromes." Heme, Chlorophyll, and Bilins: Methods and Protocols, 293-309

  • [22] Maurizi, M. R., R. Grimaud, et al. (1998). "Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP." J Biol Chem 273(20): 12476-81.

  • [23] Millar, A. J., O. Sorokina, et al. (2009). "A switchable light-input, light-output system modelled and constructed in yeast." J Biol Eng 3: 15.

  • [24] Moffat, K. and A. Moglich (2010). "Engineered photoreceptors as novel optogenetic tools." Photochem Photobiol Sci 9(10): 1286-300.

  • [25] Moffat, K., A. Moglich, et al. (2010). "Structure and function of plant photoreceptors." Annu Rev Plant Biol 61: 21-47.

  • [26] Moroder, L. and C. Renner (2006). "Azobenzene as conformational switch in model peptides." Chembiochem 7(6): 868-78.

  • [27] Morrison, D. A. and S. Ahlawat (2009). "ClpXP degrades SsrA-tagged proteins in Streptococcus pneumoniae." J Bacteriol 191(8): 2894-8.

  • [28] Muir, T. W. and A. B. Tyszkiewicz (2008). "Activation of protein splicing with light in yeast." Nat Methods 5(4): 303-5.

  • [29] Quail, P. H. (2002). "Phytochrome photosensory signalling networks." Nat Rev Mol Cell Biol 3(2): 85-93.

  • [30] Quail, P. H., R. Khanna, et al. (2004). "A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors." Plant Cell 16(11): 3033-44.

  • [31] Quail, P. H., E. Schafer, et al. (2006). "Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation." Mol Cell 23(3): 439-46.

  • [32] Quail, P. H., S. Shimizu-Sato, et al. (2002). "A light-switchable gene promoter system." Nat Biotechnol 20(10): 1041-4.

  • [33] Quail PH., D. Wagner et al. (1996) "Two small spatially distinct regions of phytochrome B are required for efficient signaling rates." Plant Cell 8:859–71.

  • [34] Park Y., H. Song (2008) "A degradation signal recognition in prokaryotes." J. Synchrotron Rad15:246–249.

  • [35] Rosen, M. K., D. W. Leung, et al. (2008). "Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway." Proc Natl Acad Sci U S A 105(35): 12797-802.

  • [36] Schafer, E., T. Kunkel, et al. (1993). "In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B." Eur J Biochem 215(3): 587-94.

  • [37] Schaffner, K., C. Hill, et al. (1994). "Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin." Eur J Biochem 223(1): 69-77.

  • [38] Sejnowski, T. J. and M. U. Gillette (2005). "Physiology. Biological clocks coordinately keep life on time." Science 309(5738): 1196-8.

  • [39] Sharrock, R. A. (2008). "The phytochrome red/far-red photoreceptor superfamily." Genome Biol 9(8): 230.

  • [40] Su, Z., H. Li, et al. (2010). "A protease-based strategy for the controlled release of therapeutic peptides." Angew Chem Int Ed Engl 49(29): 4930-3.

  • [41] Voigt, C. A., A. Levskaya, et al. (2005). "Synthetic biology: engineering Escherichia coli to see light." Nature 438(7067): 441-2.

  • [42] Voigt, C. A., A. Levskaya, et al. (2009). "Spatiotemporal control of cell signaling using a light-switchable protein interaction." Nature 461(7266): 997-1001.

  • [43] Weaver, D. R. and S. M. Reppert (1997). "Forward genetic approach strikes gold: cloning of a mammalian clock gene." Cell 89(4): 487-90.

  • [44] Weitz, C. J., K. F. Storch, et al. (2002). "Extensive and divergent circadian gene expression in liver and heart." Nature 417(6884): 78-83.

  • [45] Wu SH., JC. Lagarias JC. (2000) "Defining the bilin lyase domain: lessons from the extended phytochrome superfamily." Biochemistry39:13487–95.

  • [46] Zuber, P. and Y. Zhang (2007). "Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity." J Bacteriol 189(21): 7669-80.