Team:Groningen/Hydrophobins
From 2010.igem.org
(→Different chaplins, different functions) |
(→Chaplins) |
||
Line 21: | Line 21: | ||
Chaplins have the intrinsic property of assembling into rod-like structures called amyloid fibers. These fibers are very rigid and hard to break down and even resist boiling in SDS which denatures almost all natural occuring proteins. They share distinguishing features with the medically important amyloid fibers that are characteristic for many neurodegenerative diseases such as Alzheimer's, Huntington's, systemic amyloidosis and the prion diseases. | Chaplins have the intrinsic property of assembling into rod-like structures called amyloid fibers. These fibers are very rigid and hard to break down and even resist boiling in SDS which denatures almost all natural occuring proteins. They share distinguishing features with the medically important amyloid fibers that are characteristic for many neurodegenerative diseases such as Alzheimer's, Huntington's, systemic amyloidosis and the prion diseases. | ||
- | |||
- | |||
=== Physical properties === | === Physical properties === | ||
- | + | [[Image:chaplins.jpg|left|300px|The normally hydrophobic surface of the petri dish on the left is made hydrophillic by coating it with purified chaplins as seen on the right.]][[Image:Dispersant4GR.jpg|150px|right|Water and oil ten minutes after shaking, the separation of the two phases is clearly visable.]][[Image:Dispersant3GR.jpg|150px|right|Water and oil mixed with monomeric chaplins ten minutes after shaking. Chaplins are stained with Congo Red. The oil is clearly dispersed throughout the water phase.]] | |
Interestingly, purified chaplins can be used to coat normally hydrophobic surfaces such as petri dishes, rendering them hydrophilic. This is due to their amphipatic nature, being hydrophobic on one side and hydrophilic on the other. In nature though they only coat the outside of the aerial hyphae of ''S. coelicolor'' hydrophobically. We pose that the assembly on the outside of cells is important for the amyloid fibers to polymerize into the right configuration to obtain extreme hydrophobicity. This is one of the reasons we chose to express chaplins in a biofilm as opposed to coat surfaces with purified chaplins. | Interestingly, purified chaplins can be used to coat normally hydrophobic surfaces such as petri dishes, rendering them hydrophilic. This is due to their amphipatic nature, being hydrophobic on one side and hydrophilic on the other. In nature though they only coat the outside of the aerial hyphae of ''S. coelicolor'' hydrophobically. We pose that the assembly on the outside of cells is important for the amyloid fibers to polymerize into the right configuration to obtain extreme hydrophobicity. This is one of the reasons we chose to express chaplins in a biofilm as opposed to coat surfaces with purified chaplins. | ||
- | + | Besides hydrophobicity and hydrophilicity we came across even another very interesting property. When in monomeric form purified chaplins appear to have very good oil dispersing properties. When in emulsion with water in oil, chaplins will interact with both water and oil dispersing the oil into the water. | |
- | + | Also, when monomeric, chaplins show to reduce surface tension of water which is illustrated in the figure below. It is clearly visable in the second tube from the right that monomeric chaplins flatten the meniscus at the water-oil interface. However, once assembled into polymeres, this property is lost as can be seen in the second tube from the left, which shows the same features as the tube on the far left which only contains water and oil. The tube on the far right only contained water, oil and Congo Red staining. | |
+ | [[Image:Dispersant1GR.jpg|300px|center|Left to right: Water and oil; Water, oil, Congo Red staining and AssembledChaplins; Water, oil, Congo Red staining and monomeric chaplins; Water, oil and Congo Red staining.]] | ||
- | |||
Moreover, chaplins are extremely stable, both thermally and chemically. As an illustration, to purify them one has to turn to severe techniques like boiling in SDS and extraction with trifluoroacetic acid. Also, along the entire duration of our project – more than half a year – we did not observe any decline in the physical properties of our purified chaplins, being able to re-use the proteins over and over again. | Moreover, chaplins are extremely stable, both thermally and chemically. As an illustration, to purify them one has to turn to severe techniques like boiling in SDS and extraction with trifluoroacetic acid. Also, along the entire duration of our project – more than half a year – we did not observe any decline in the physical properties of our purified chaplins, being able to re-use the proteins over and over again. |
Revision as of 14:08, 27 October 2010
Chaplins
Strongly hydrophobic proteins
In order to provide our Bacillus subtilis biofilm with hydrophobic properties we have turned to highly hydrophobic proteins originating from Streptomyces coelicolor. This is a soil dwelling bacterium which undergoes morphological differentiation as it goes through different stages in its life cycle, greatly resembling fungal growth. After submerged, vegetative growth aerial hyphae are formed which protrude from the moist substrate. The formation of these aerial hyphae appear to require strongly hydrophobic proteins called chaplins, which have previously been described by Claessen et al (2003) and Elliot et al (2003).
Different chaplins, different functions
There are a number of different chaplins shown in the figure below. In S. coelicolor these have specific functions in aerial growth and the transition to this phase. During submerged growth chaplins E and H are excreted and assemble at the water-air surface, drastically decreasing surface tension, allowing hyphae to break through the surface. On these forming aerial hyphae chaplins A to H assemble to form an extremely hydrophobic surface(Claessen et al 2003).
Two subgroups
Chaplins can be categorized into two groups. The first group consists of chaplins A to C and are about 225 amino acids in size. These large chaplins contain a signal sequence, two hydrophobic chaplin domains, a hydrophilic region and a cell wall anchor. The second group includes chaplin D to H and are with around 63 amino acids smaller than the afore mentioned chaplins. Being smaller, they only contain a signal sequence followed by a hydrophobic chaplin domain.
Chaplins have the intrinsic property of assembling into rod-like structures called amyloid fibers. These fibers are very rigid and hard to break down and even resist boiling in SDS which denatures almost all natural occuring proteins. They share distinguishing features with the medically important amyloid fibers that are characteristic for many neurodegenerative diseases such as Alzheimer's, Huntington's, systemic amyloidosis and the prion diseases.
Physical properties
Interestingly, purified chaplins can be used to coat normally hydrophobic surfaces such as petri dishes, rendering them hydrophilic. This is due to their amphipatic nature, being hydrophobic on one side and hydrophilic on the other. In nature though they only coat the outside of the aerial hyphae of S. coelicolor hydrophobically. We pose that the assembly on the outside of cells is important for the amyloid fibers to polymerize into the right configuration to obtain extreme hydrophobicity. This is one of the reasons we chose to express chaplins in a biofilm as opposed to coat surfaces with purified chaplins.
Besides hydrophobicity and hydrophilicity we came across even another very interesting property. When in monomeric form purified chaplins appear to have very good oil dispersing properties. When in emulsion with water in oil, chaplins will interact with both water and oil dispersing the oil into the water.
Also, when monomeric, chaplins show to reduce surface tension of water which is illustrated in the figure below. It is clearly visable in the second tube from the right that monomeric chaplins flatten the meniscus at the water-oil interface. However, once assembled into polymeres, this property is lost as can be seen in the second tube from the left, which shows the same features as the tube on the far left which only contains water and oil. The tube on the far right only contained water, oil and Congo Red staining.
Moreover, chaplins are extremely stable, both thermally and chemically. As an illustration, to purify them one has to turn to severe techniques like boiling in SDS and extraction with trifluoroacetic acid. Also, along the entire duration of our project – more than half a year – we did not observe any decline in the physical properties of our purified chaplins, being able to re-use the proteins over and over again.
Overall these small proteins appear to have great potential in all kinds of applicational fields, making them very interesting additions to the parts registry as biobricks. However it was their most remarkable property – their hydrophobicity – which drew our attention to them to use them in our project.
References
Claessen, D; Rink, R; de Jong, W et al. 2003. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17 1714-1726
Elliot, MA; Karoonuthaisiri, N; Huang, JQ; et al. 2003 The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17 1727-1740
Nimittrakoolchai, O; Supothina, S 2007. Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications. Journal of the European Ceramic Society 28 947-952