Team:Cambridge/Human Practices

From 2010.igem.org

(Difference between revisions)
(Futures)
(Applications)
Line 10: Line 10:
==Applications==
==Applications==
-
Our thoughts on using biological light sources led us to consider the concept of sustainability. Would our lighting be better than conventional devices in this area? and where might it be useful?  
+
Our thoughts on using biological light sources led us to consider the concept of sustainability. Would our lighting be more sustainable and environmentally friendly than conventional devices? and where might it be useful? Bioluminescence is 'cold light' and much more efficient than conventional lighting. Despite this we find it unlikely that bioluminescence would replace current light sources and instead considered it's applications in remote off grid areas. Our biological systems would require a chemical fuel source - perhaps this could come from waste products 
We also considered the prospect of using our light production in biosensors after a talk from [http://practicalaction.org/blog/author/djg/ David Grimshaw] of Practical Action. Dr. Grimshaw has worked with the issues of contamination of water sources with arsenic in Bangladesh and mercury in Nepal. He informed us that local people wished for a portable device that was easy to use such that testing of wells could be performed by members of the community and a quantitative digital readout would be preferable. Light production as an output of a biological circuit could be detected by a sensor in an electrical system to give a digital readout. Our biobricks could bridge the gap between biological and electrical circuits. Further investigation into the practicalities of this led to the development of the [https://2010.igem.org/Team:Cambridge/Tools/Eglometer E.glometer]
We also considered the prospect of using our light production in biosensors after a talk from [http://practicalaction.org/blog/author/djg/ David Grimshaw] of Practical Action. Dr. Grimshaw has worked with the issues of contamination of water sources with arsenic in Bangladesh and mercury in Nepal. He informed us that local people wished for a portable device that was easy to use such that testing of wells could be performed by members of the community and a quantitative digital readout would be preferable. Light production as an output of a biological circuit could be detected by a sensor in an electrical system to give a digital readout. Our biobricks could bridge the gap between biological and electrical circuits. Further investigation into the practicalities of this led to the development of the [https://2010.igem.org/Team:Cambridge/Tools/Eglometer E.glometer]

Revision as of 23:32, 26 October 2010