Team:Cambridge/Tools/Lighting

From 2010.igem.org

(Difference between revisions)
(Bringing it all together)
(Bringing it all together)
Line 136: Line 136:
Now we combined the above calculations. If we assume that the tree absorbs all light passing through its projected area '''A''' (not a bad approximation, since only a few percent is able to make it through the canopy) then the total radiant light energy falling on it during the day time per second is '''60*A''' W. If the total radiant energy outputted at night per second is '''E''', then the luminous flux is '''471.13E''' lm, which we desire to be as bright as a street lamp '''X''' lm, then combining these we find that the total efficiency of our plant has to be:
Now we combined the above calculations. If we assume that the tree absorbs all light passing through its projected area '''A''' (not a bad approximation, since only a few percent is able to make it through the canopy) then the total radiant light energy falling on it during the day time per second is '''60*A''' W. If the total radiant energy outputted at night per second is '''E''', then the luminous flux is '''471.13E''' lm, which we desire to be as bright as a street lamp '''X''' lm, then combining these we find that the total efficiency of our plant has to be:
-
Efficiency = (X*T<sub>night</sub>) / (471.13*60A*T<sub>day</sub>)
+
'''Efficiency = (X*T<sub>night</sub>) / (471.13*60A*T<sub>day</sub>)'''
where '''T<sub>day</sub>''' and '''T<sub>night</sub>''' are the hours of daylight and night time respectively. If we choose the least bright street lamp ('''X=210''') and hypothesise a projected area of '''A=30m<sup>2</sup>''', and a '''day:night ratio 14:10'''  then we find that the efficiency must be roughly '''0.02%'''. This means that 0.02% of the total energy hitting the tree must be converted eventually into light output, a potentially achievable target.
where '''T<sub>day</sub>''' and '''T<sub>night</sub>''' are the hours of daylight and night time respectively. If we choose the least bright street lamp ('''X=210''') and hypothesise a projected area of '''A=30m<sup>2</sup>''', and a '''day:night ratio 14:10'''  then we find that the efficiency must be roughly '''0.02%'''. This means that 0.02% of the total energy hitting the tree must be converted eventually into light output, a potentially achievable target.
{{:Team:Cambridge/Templates/footer}}
{{:Team:Cambridge/Templates/footer}}

Revision as of 20:08, 26 October 2010