Team:ESBS-Strasbourg/Project/Application
From 2010.igem.org
(Difference between revisions)
Line 523: | Line 523: | ||
</center> | </center> | ||
<br> | <br> | ||
+ | <a name="flip"></a> | ||
<p><b>Flip Flop</b></p> | <p><b>Flip Flop</b></p> | ||
The system further allows the control of transcriptional regulation. Another application of this system is the creating of a flip flop mechanism which can be induced by light. This can allow the expression of two different genes sequentially. In the beginning just the gene in gene cassette one is expressed. In the example this is the GPF protein. After a light induction the gene expression is switched to gene cassette two, which is RFP in this example. Figure 2 gives a more detailed description of this mechanism. This allows the tight control of two genes in one host organism. The tight control and sequentially nature of this flip flop mechanism allows a light-controlled multistep synthesis which a huge potential for industrial application in multi -step synthesizes. | The system further allows the control of transcriptional regulation. Another application of this system is the creating of a flip flop mechanism which can be induced by light. This can allow the expression of two different genes sequentially. In the beginning just the gene in gene cassette one is expressed. In the example this is the GPF protein. After a light induction the gene expression is switched to gene cassette two, which is RFP in this example. Figure 2 gives a more detailed description of this mechanism. This allows the tight control of two genes in one host organism. The tight control and sequentially nature of this flip flop mechanism allows a light-controlled multistep synthesis which a huge potential for industrial application in multi -step synthesizes. | ||
Line 539: | Line 540: | ||
</center> | </center> | ||
<br> | <br> | ||
+ | <a name="geneos"></a> | ||
<p><b>Genetic Oscillator</b></p> | <p><b>Genetic Oscillator</b></p> | ||
The idea of the flip flop mechanism can be extended to a genetic oscillator with three, four or even more sequential steps. Figure 3 shows an example of a three step oscillator. This oscillator is tightly controlled by light and allows the sequentially expression of three different genes. Such an implementation would present a genetically encoded device to store multiple bits of information within a living cell. | The idea of the flip flop mechanism can be extended to a genetic oscillator with three, four or even more sequential steps. Figure 3 shows an example of a three step oscillator. This oscillator is tightly controlled by light and allows the sequentially expression of three different genes. Such an implementation would present a genetically encoded device to store multiple bits of information within a living cell. | ||
Line 561: | Line 563: | ||
</td> | </td> | ||
</tr> | </tr> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
</table> | </table> | ||
</body> | </body> | ||
</html> | </html> |
Revision as of 21:59, 25 October 2010
{|
>