Team:UC Davis
From 2010.igem.org
Line 34: | Line 34: | ||
<td><table class="pikachu" width="675px"><tr><th><img class="marth" src="/wiki/images/b/b8/Projabs.jpg" width="675px"></th></tr> | <td><table class="pikachu" width="675px"><tr><th><img class="marth" src="/wiki/images/b/b8/Projabs.jpg" width="675px"></th></tr> | ||
<tr> | <tr> | ||
- | <td class="kirby"><p class="header"><b>Spatial Oscillation! It Makes Stripes!</b></p>Repeating patterns are an overwhelmingly common sight in nature, whether it comes in the form of a zebra's stripes or a centipede's repeated segmented body. And although it may seem a simple task to replicate this behavior, in reality, cells that undertake transformations into specific states to express a certain phenotype undergo very complicated biological processes. These biological processes often involve a cell to know where it is spatially (spatial awareness), and given the information it receives from the state of its environment, a cell may choose to perform one action over others. Our iGEM project involves building a device that when implanted in a cell allows the cell to choose from one of two states given a stimulus (in our case, the absence of light), in a project we have named <a href='https://2010.igem.org/Team:UC_Davis/Projects'> | + | <td class="kirby"><p class="header"><b>Spatial Oscillation! It Makes Stripes!</b></p>Repeating patterns are an overwhelmingly common sight in nature, whether it comes in the form of a zebra's stripes or a centipede's repeated segmented body. And although it may seem a simple task to replicate this behavior, in reality, cells that undertake transformations into specific states to express a certain phenotype undergo very complicated biological processes. These biological processes often involve a cell to know where it is spatially (spatial awareness), and given the information it receives from the state of its environment, a cell may choose to perform one action over others. Our iGEM project involves building a device that when implanted in a cell allows the cell to choose from one of two states given a stimulus (in our case, the absence of light), in a project we have named "<a href='https://2010.igem.org/Team:UC_Davis/Projects'>Spatial Oscillation</a>".<br/><br/><p class="header"><b>CPOTATo: The Weapon Against Crosstalk</b></p><p class="indent">A second challenge we've tried to overcome that grew from our main project, the cI Lambda problem and the pH sensor project is the realization that our intermediate devices were causing slow growth phenotypes in our cells. This, and other observations, led us to conclude that we were witnessing the unintended interaction between our device and the host. This is not only bad, but it is also a critical challenge in general in synthetic biology. To attempt to remedy this issue in the future, we have designed CPOTATo (Crosstalk Predictive Organism Targeted Analysis Tool), a computational tool that attempts to predict potential cross-talk between a synthetic circuit and its host so that the engineer might know before starting a project what the likelihood of potentially disruptive interactions between the host and the device is. For more, <a href="https://2010.igem.org/Team:UC_Davis/Projects">click here!</a><p> |
</td></tr></table></td> | </td></tr></table></td> | ||
</tr> | </tr> |
Revision as of 03:20, 28 October 2010
|
|
|