Team:Korea U Seoul/Project
From 2010.igem.org
Line 1: | Line 1: | ||
{{:Template:KUmenu}} | {{:Template:KUmenu}} | ||
+ | |||
='''abstract'''= | ='''abstract'''= | ||
Toxic heavy metals such as arsenic, zinc, and cadmium in water are very harmful. Detecting these heavy metals is an important task. So we designed a heavy-metal-detecting E. coli. In order to design the system, we employed two fluorescence proteins (GFP, RFP) and aryl acylamidase as signal reporters. The aryl acylamidase converts a colorless acetaminophen(Tylenol TM) to a brown color substrate. Since the detecting E. coli has three heavy metal promoters, if more than two heavy metals coexist in a solution, the E. coli emit mixed fluorescence, so we simultaneously detect metals. Our goal is to synthetic modules put these three genes for different heavy metals in a row in E. coli and then utilized in the form of a lyophilized powder, which can be stored in a drug capsule to make it portable so that analysis of water is easily processed. We call it a "Capsule Cop". | Toxic heavy metals such as arsenic, zinc, and cadmium in water are very harmful. Detecting these heavy metals is an important task. So we designed a heavy-metal-detecting E. coli. In order to design the system, we employed two fluorescence proteins (GFP, RFP) and aryl acylamidase as signal reporters. The aryl acylamidase converts a colorless acetaminophen(Tylenol TM) to a brown color substrate. Since the detecting E. coli has three heavy metal promoters, if more than two heavy metals coexist in a solution, the E. coli emit mixed fluorescence, so we simultaneously detect metals. Our goal is to synthetic modules put these three genes for different heavy metals in a row in E. coli and then utilized in the form of a lyophilized powder, which can be stored in a drug capsule to make it portable so that analysis of water is easily processed. We call it a "Capsule Cop". | ||
- | + | ='''Introduction'''= | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | ='''design'''= | ||
+ | ='''measurement'''= | ||
- | = | + | ='''Result'''= |
- | = | + | ='''Discussion'''= |
Revision as of 10:39, 27 October 2010
Contents |
abstract
Toxic heavy metals such as arsenic, zinc, and cadmium in water are very harmful. Detecting these heavy metals is an important task. So we designed a heavy-metal-detecting E. coli. In order to design the system, we employed two fluorescence proteins (GFP, RFP) and aryl acylamidase as signal reporters. The aryl acylamidase converts a colorless acetaminophen(Tylenol TM) to a brown color substrate. Since the detecting E. coli has three heavy metal promoters, if more than two heavy metals coexist in a solution, the E. coli emit mixed fluorescence, so we simultaneously detect metals. Our goal is to synthetic modules put these three genes for different heavy metals in a row in E. coli and then utilized in the form of a lyophilized powder, which can be stored in a drug capsule to make it portable so that analysis of water is easily processed. We call it a "Capsule Cop".