Team:SDU-Denmark/safety-d

From 2010.igem.org

(Difference between revisions)
(Placing the watermark)
(Size and design)
Line 63: Line 63:
==Size and design==
==Size and design==
-
 
+
Placing the watermark after the restriction sites, it should be relatively small, as to not interfere with the functionality of the part into which it is inserted. We propose that the watermark should be 12 nucleotides, divided in two groups of six which will allow for 16.777.216 combinations of A, C, G and T in total.
-
Placing the watermark after the restriction sites, it should be relatively small, as to not interfere with the functionality of the part into which it is inserted. We propose that the watermark should be 12 nucleotides, divided in two groups of six which will allow for 4096 combinations each .
+
The watermark must not contain any restriction-enzymes or stop codons. If the watermark accidentally contained a restriction-enzyme or a stop codon, the watermark would interfere with the function of the part into which it is inserted, and would likely render the part useless. This severely restricts the number of combinations we can use.
The watermark must not contain any restriction-enzymes or stop codons. If the watermark accidentally contained a restriction-enzyme or a stop codon, the watermark would interfere with the function of the part into which it is inserted, and would likely render the part useless. This severely restricts the number of combinations we can use.
-
Ideally we would have liked to use more nucleotides, as we would have been able to generate more combinations. But the watermark should be as small as possible as not to interfere with the functions (i.e. cause a frame shift) of the part and not make the design of primers unduly complicated. We could make relatively long watermarks to satisfy our need for a very large number of possible combinations, but it would make the design of the necessary primers extremely complicated, and would go against our goal of making the insertion of watermarks as small and easy a procedure as possible. We believe that the best compromise between the amount of combinations and the ease of insertion would be at around 12 nucleotides.  
+
Ideally we would have liked to use more nucleotides, as we would have been able to generate more combinations. But the watermark should be as small as possible as not to interfere with the functions (i.e. cause a frame shift) of the part and not make the design of primers unduly complicated. We could make relatively long watermarks to satisfy our need for a very large number of possible combinations, but it would make the design of the necessary primers extremely complicated, and would go against our goal of making the insertion of watermarks as small and easy a procedure as possible. We believe that the best compromise between the amount of combinations and the ease of insertion would be at around 12 nucleotides.
-
 
+
==License==
==License==

Revision as of 12:10, 26 October 2010