Team:Nevada/Transgenic Plants

From 2010.igem.org

(Difference between revisions)
Line 22: Line 22:
-
<p style="text-align:center;"><span style="text-decoration:underline;font-weight:bold">Do You Have A Green Thumb?</span></p>
+
<p>'''Technological Advances from Genetically Engineered Plants'''
-
<p>The Nevada iGEM team along with a handful of other teams this year are looking to expand iGEM to the world of plants. iGEM will finally have a medium to explore eukaryotic gene manipulation without requiring yeast farms or human experimentation. Plants provide a kingdom of exploration that could make iGEM a potential attractant to commercial biotech firms as it brings the possibilities of synthetic biology out into the open from the patents and trade secret shadows which a lot of firms rely on today.</p>
+
<br>
 +
Since the initial development of Agrobacterium transformation systems, many plant species including tobacco, tomato, potato, rice, soybean, mint, melon, cucumber, pine and poplar trees, and many others have been transformed using this ingenious bacterial vector. Important traits have been engineered into plants including pest and weed resistance, increased nutritional value, environmental stress tolerance, the production of pharmaceutical and industrial proteins, and the production of bioactive secondary chemical compounds. Our ability to genetically engineer plants has revolutionized agriculture by increasing crop yields while drastically decreasing the application of herbicides and pesticides. This technology is necessary to allow farmers to produce sufficient food for a growing global population. Furthermore, plants are currently being engineered to produce fuel and chemical alternatives to petroleum based products. Because plants are net consumers of atmospheric carbon dioxide, they are currently being seen as a means to sequester greenhouse gases while at the same time replacing petroleum and coal as chemical feedstocks.
-
<p>Engaging a whole new realm of organisms requires fundamental understanding of those organisms and how they differ from the current models. That understanding from iGEM teams is essential to its success. Obviously, plants come with their own unique promoters, activators, and repressors with which to play. We added a few plant promoters to the iGEM registry for future teams to use. Also, there will need to be new consideration as to what types of proteins with which we can transform the plants. Fortunately, some essential eukaryotic proteins that iGEM has dealt with, like the fluorescent proteins, have already been used in plant experimentation.</p>
+
cont...</p>
-
 
+
-
As far as testing new models, we believe our NT cells may provide a cheaper, faster alternative to teams interested in experimenting with plants. Also, the NT cells are safer to use and pose less risk to the environment then experimenting with actual plants.
+

Revision as of 18:15, 26 October 2010

Transgenic Plants.png

 

Transgenic Plants: into the Wild


Technological Advances from Genetically Engineered Plants
Since the initial development of Agrobacterium transformation systems, many plant species including tobacco, tomato, potato, rice, soybean, mint, melon, cucumber, pine and poplar trees, and many others have been transformed using this ingenious bacterial vector. Important traits have been engineered into plants including pest and weed resistance, increased nutritional value, environmental stress tolerance, the production of pharmaceutical and industrial proteins, and the production of bioactive secondary chemical compounds. Our ability to genetically engineer plants has revolutionized agriculture by increasing crop yields while drastically decreasing the application of herbicides and pesticides. This technology is necessary to allow farmers to produce sufficient food for a growing global population. Furthermore, plants are currently being engineered to produce fuel and chemical alternatives to petroleum based products. Because plants are net consumers of atmospheric carbon dioxide, they are currently being seen as a means to sequester greenhouse gases while at the same time replacing petroleum and coal as chemical feedstocks. cont...


Nevada CABNR.jpg NV INBRE Logo.jpg UNR ASUN logo.jpg Promega logo.jpg Invitrogen logo.jpeg