Team:ESBS-Strasbourg/Project/Reference

From 2010.igem.org

(Difference between revisions)
Line 488: Line 488:
<ul>
<ul>
<font>
<font>
-
<li><p align="left">Ahlawat, S. and D. A. Morrison (2009). &quot;ClpXP degrades SsrA-tagged
+
<li><p ALIGN="LEFT">Baker, T. A., R. T. Sauer, et al. (2005). &quot;Versatile modes of
-
proteins in Streptococcus pneumoniae.&quot; <u>J Bacteriol</u> <b>
+
peptide recognition by the AAA+ adaptor protein SspB.&quot; <u>Nat Struct Mol Biol</u> <b>12</b>(6): 520-5.</p></li>
-
191</b>(8): 2894-8.</font></p></li>
+
<li><p ALIGN="LEFT">Fussenegger, M., M. Tigges, et al. (2009). &quot;A tunable synthetic
-
<font>
+
mammalian oscillator.&quot; <u>Nature</u> <b>457</b>(7227):  
-
<li><p align="left">Davis, J. H., T. A. Baker, et al. (2009). &quot;Engineering synthetic
+
309-12.</p></li>
-
adaptors and substrates for controlled ClpXP degradation.&quot; <u>J Biol Chem</u> <b>284</b>(33): 21848-55.</font></p></li>
+
<li><p ALIGN="LEFT">Goldberg, A. L. (2003). &quot;Protein degradation and protection  
-
<font>
+
-
<li><p align="left">Glynn, S. E., A. Martin, et al. (2009). &quot;Structures of
+
-
asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+
+
-
protein-unfolding machine.&quot; <u>Cell</u> <b>139</b>(4):  
+
-
744-56.</font></p></li>
+
-
<font>
+
-
<li><p align="left">Goldberg, A. L. (2003). &quot;Protein degradation and protection  
+
against misfolded or damaged proteins.&quot; <u>Nature</u> <b>426</b>(6968):  
against misfolded or damaged proteins.&quot; <u>Nature</u> <b>426</b>(6968):  
895-9.</p></li>
895-9.</p></li>
-
<li><p align="left">Griffith, K. L. and A. D. Grossman (2008). &quot;Inducible protein  
+
<li><p ALIGN="LEFT">Gregersen, N., C. B. Pedersen, et al. (2003). &quot;Misfolding,
 +
degradation, and aggregation of variant proteins. The molecular pathogenesis of
 +
short chain acyl-CoA dehydrogenase (SCAD) deficiency.&quot; <u>J Biol Chem</u> <b>278</b>(48): 47449-58.</p></li>
 +
<li><p ALIGN="LEFT">Grossman, A. D. and K. L. Griffith (2008). &quot;Inducible protein  
degradation in Bacillus subtilis using heterologous peptide tags and adaptor  
degradation in Bacillus subtilis using heterologous peptide tags and adaptor  
proteins to target substrates to the protease ClpXP.&quot; <u>Mol Microbiol</u> <b>70</b>(4): 1012-25.</p></li>
proteins to target substrates to the protease ClpXP.&quot; <u>Mol Microbiol</u> <b>70</b>(4): 1012-25.</p></li>
-
<li><p align="left">Khanna, R., E. Huq, et al. (2004). &quot;A novel molecular  
+
<li><p ALIGN="LEFT">Houry, W. A., U. A. Wojtyra, et al. (2003). &quot;The N-terminal zinc
 +
binding domain of ClpX is a dimerization domain that modulates the chaperone
 +
function.&quot; <u>J Biol Chem</u> <b>278</b>(49): 48981-90.</p></li>
 +
<li><p ALIGN="LEFT">Hughes, J., F. T. Landgraf, et al. (2001). &quot;Recombinant
 +
holophytochrome in Escherichia coli.&quot; <u>FEBS Lett</u> <b>508</b>(3):
 +
459-62.</p></li>
 +
<li><p ALIGN="LEFT">Kohchi, T., K. Mukougawa, et al. (2006). &quot;Metabolic engineering
 +
to produce phytochromes with phytochromobilin, phycocyanobilin, or
 +
phycoerythrobilin chromophore in Escherichia coli.&quot; <u>FEBS Lett</u> <b>580</b>(5): 1333-8.</p></li>
 +
<li><p ALIGN="LEFT">Maurizi, M. R., R. Grimaud, et al. (1998). &quot;Enzymatic and
 +
structural similarities between the Escherichia coli ATP-dependent proteases,
 +
ClpXP and ClpAP.&quot; <u>J Biol Chem</u> <b>273</b>(20):
 +
12476-81.</p></li>
 +
<li><p ALIGN="LEFT">Moffat, K. and A. Moglich (2010). &quot;Engineered photoreceptors as
 +
novel optogenetic tools.&quot; <u>Photochem Photobiol Sci</u> <b>9</b>(10):
 +
1286-300.</p></li>
 +
<li><p ALIGN="LEFT">Moroder, L. and C. Renner (2006). &quot;Azobenzene as conformational
 +
switch in model peptides.&quot; <u>Chembiochem</u> <b>7</b>(6):
 +
868-78.</p></li>
 +
<li><p ALIGN="LEFT">Morrison, D. A. and S. Ahlawat (2009). &quot;ClpXP degrades SsrA-tagged
 +
proteins in Streptococcus pneumoniae.&quot; <u>J Bacteriol</u> <b>
 +
191</b>(8): 2894-8.</p></li>
 +
<li><p ALIGN="LEFT">Quail, P. H., R. Khanna, et al. (2004). &quot;A novel molecular  
recognition motif necessary for targeting photoactivated phytochrome signaling  
recognition motif necessary for targeting photoactivated phytochrome signaling  
to specific basic helix-loop-helix transcription factors.&quot; <u>Plant Cell</u> <b>16</b>(11): 3033-44.</p></li>
to specific basic helix-loop-helix transcription factors.&quot; <u>Plant Cell</u> <b>16</b>(11): 3033-44.</p></li>
-
<li><p align="left">Kunkel, T., K. Tomizawa, et al. (1993). &quot;In vitro formation of a
+
<li><p ALIGN="LEFT">Rosen, M. K., D. W. Leung, et al. (2008). &quot;Genetically encoded
-
photoreversible adduct of phycocyanobilin and tobacco apophytochrome B.&quot; <u>Eur J  
+
photoswitching of assembly through the Cdc42-WASP-Arp2/3 complex pathway.&quot;
-
Biochem</u> <b>215</b>(3): 587-94.</p></li>
+
<u>Proc Natl Acad Sci U S A</u> <b>105</b>(35): 12797-802.</p></li>
-
<li><p align="left">Lee, M. E., T. A. Baker, et al. (2010). &quot;Control of substrate  
+
<li><p ALIGN="LEFT">Sauer, R. T., T. A. Baker, et al. (2009). &quot;Engineering synthetic
 +
adaptors and substrates for controlled ClpXP degradation.&quot; <u>J Biol Chem</u> <b>284</b>(33): 21848-55.</p></li>
 +
<li><p ALIGN="LEFT">Sauer, R. T., T. A. Baker, et al. (2009). &quot;Structures of
 +
asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+
 +
protein-unfolding machine.&quot; <u>Cell</u> <b>139</b>(4):  
 +
744-56.</p></li>
 +
<li><p ALIGN="LEFT">Sauer, R. T., T. A. Baker, et al. (2010). &quot;Control of substrate  
gating and translocation into ClpP by channel residues and ClpX binding.&quot;  
gating and translocation into ClpP by channel residues and ClpX binding.&quot;  
-
<u>J Mol Biol</u> <b>399</b>(5): 707-18.</p></li>
+
<u>J Mol Biol</u> <b>39 </b>(5): 707-18.</p></li>
-
<li><p align="left">Levchenko, I., R. A. Grant, et al. (2005). &quot;Versatile modes of
+
<li><p ALIGN="LEFT">Sauer, R. T., T. A. Baker, et al. (2005). &quot;Rebuilt AAA + motors  
-
peptide recognition by the AAA+ adaptor protein SspB.&quot; <u>Nat Struct Mol Biol</u> <b>12</b>(6): 520-5.</p></li>
+
-
<li><p align="left">Levskaya, A., A. A. Chevalier, et al. (2005). &quot;Synthetic
+
-
biology: engineering Escherichia coli to see light.&quot; <u>Nature</u> <b>438</b>(7067): 441-2.</p></li>
+
-
<li><p align="left">Levskaya, A., O. D. Weiner, et al. (2009). &quot;Spatiotemporal
+
-
control of cell signalling using a light-switchable protein interaction.&quot;
+
-
<u>Nature</u> <b>461</b>(7266): 997-1001.</p></li>
+
-
<li><p align="left">Li, H., Y. Ma, et al. (2010). &quot;A protease-based strategy for the
+
-
controlled release of therapeutic peptides.&quot; <u>Angew Chem Int Ed Engl</u> <b>49</b>(29): 4930-3.</p></li>
+
-
<li><p align="left">Martin, A., T. A. Baker, et al. (2005). &quot;Rebuilt AAA + motors  
+
reveal operating principles for ATP-fuelled machines.&quot; <u>Nature</u> <b>437</b>(7062): 1115-20.</p></li>
reveal operating principles for ATP-fuelled machines.&quot; <u>Nature</u> <b>437</b>(7062): 1115-20.</p></li>
-
<li><p align="left">McGinness, K. E., T. A. Baker, et al. (2006). &quot;Engineering  
+
<li><p ALIGN="LEFT">Sauer, R. T., T. A. Baker, et al. (2006). &quot;Engineering  
controllable protein degradation.&quot; <u>Mol Cell</u> <b>22</b>(5):  
controllable protein degradation.&quot; <u>Mol Cell</u> <b>22</b>(5):  
-
701-7.</p></li>
+
701-7.</font></p></li>
-
<li><p align="left">McGinness, K. E., D. N. Bolon, et al. (2007). &quot;Altered tethering  
+
<font>
-
of the SspB adaptor to the ClpXP protease causes changes in substrate delivery.&quot;  
+
<li><p ALIGN="LEFT">Sauer, R. T., T. A. Baker, et al. (2007). &quot;Altered tethering of  
 +
the SspB adaptor to the ClpXP protease causes changes in substrate delivery.&quot;  
<u>J Biol Chem</u> <b>282</b>(15): 11465-73.</p></li>
<u>J Biol Chem</u> <b>282</b>(15): 11465-73.</p></li>
-
<li><p align="left">Mukougawa, K., H. Kanamoto, et al. (2006). &quot;Metabolic
+
<li><p ALIGN="LEFT">Schafer, E., T. Kunkel, et al. (1993). &quot;In vitro formation of a
-
engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or
+
photoreversible adduct of phycocyanobilin and tobacco apophytochrome B.&quot; <u>Eur J
-
phycoerythrobilin chromophore in Escherichia coli.&quot; <u>FEBS Lett</u> <b>580</b>(5): 1333-8.</p></li>
+
Biochem</u> <b>215</b>(3): 587-94. </p></li>
-
<li><p align="left">Pedersen, C. B., P. Bross, et al. (2003). &quot;Misfolding,
+
<li><p ALIGN="LEFT">Su, Z., H. Li, et al. (2010). &quot;A protease-based strategy for the
-
degradation, and aggregation of variant proteins. The molecular pathogenesis of
+
controlled release of therapeutic peptides.&quot; <u>Angew Chem Int Ed Engl</u> <b>49</b>(29): 4930-3.</p></li>
-
short chain acyl-CoA dehydrogenase (SCAD) deficiency.&quot; <u>J Biol Chem</u> <b>278</b>(48): 47449-58.</p></li>
+
<li><p ALIGN="LEFT">Voigt, C. A., A. Levskaya, et al. (2005). &quot;Synthetic biology:
-
<li><p align="left">Tigges, M., T. T. Marquez-Lago, et al. (2009). &quot;A tunable
+
engineering Escherichia coli to see light.&quot; <u>Nature</u> <b>
-
synthetic mammalian oscillator.&quot; <u>Nature</u> <b>457</b>(7227):  
+
438</b>(7067): 441-2.</p></li>
-
309-12.</p></li>
+
<li><p ALIGN="LEFT">Voigt, C. A., A. Levskaya, et al. (2009). &quot;Spatiotemporal
-
<li><p align="left">Zhang, Y. and P. Zuber (2007). &quot;Requirement of the zinc-binding  
+
control of cell signalling using a light-switchable protein interaction.&quot;  
 +
<u>Nature</u> <b>461</b>(7266): 997-1001.</p></li>
 +
<li><p ALIGN="LEFT">Zuber, P. and Y. Zhang (2007). &quot;Requirement of the zinc-binding  
domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide  
domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide  
-
stress on ClpXP activity.&quot; <u>J Bacteriol</u> <b>189</b>(21):  
+
stress on ClpXP activity.&quot; <u>J Bacteriol</u> <b>189</b>(21):7669-80.</p></li>
-
7669-80.</font></p></li></ul>
+
</font></p></li></ul>

Revision as of 19:01, 26 October 2010

{|

ESBS - Strasbourg



References

References

  • Baker, T. A., R. T. Sauer, et al. (2005). "Versatile modes of peptide recognition by the AAA+ adaptor protein SspB." Nat Struct Mol Biol 12(6): 520-5.

  • Fussenegger, M., M. Tigges, et al. (2009). "A tunable synthetic mammalian oscillator." Nature 457(7227): 309-12.

  • Goldberg, A. L. (2003). "Protein degradation and protection against misfolded or damaged proteins." Nature 426(6968): 895-9.

  • Gregersen, N., C. B. Pedersen, et al. (2003). "Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency." J Biol Chem 278(48): 47449-58.

  • Grossman, A. D. and K. L. Griffith (2008). "Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP." Mol Microbiol 70(4): 1012-25.

  • Houry, W. A., U. A. Wojtyra, et al. (2003). "The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function." J Biol Chem 278(49): 48981-90.

  • Hughes, J., F. T. Landgraf, et al. (2001). "Recombinant holophytochrome in Escherichia coli." FEBS Lett 508(3): 459-62.

  • Kohchi, T., K. Mukougawa, et al. (2006). "Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli." FEBS Lett 580(5): 1333-8.

  • Maurizi, M. R., R. Grimaud, et al. (1998). "Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP." J Biol Chem 273(20): 12476-81.

  • Moffat, K. and A. Moglich (2010). "Engineered photoreceptors as novel optogenetic tools." Photochem Photobiol Sci 9(10): 1286-300.

  • Moroder, L. and C. Renner (2006). "Azobenzene as conformational switch in model peptides." Chembiochem 7(6): 868-78.

  • Morrison, D. A. and S. Ahlawat (2009). "ClpXP degrades SsrA-tagged proteins in Streptococcus pneumoniae." J Bacteriol 191(8): 2894-8.

  • Quail, P. H., R. Khanna, et al. (2004). "A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors." Plant Cell 16(11): 3033-44.

  • Rosen, M. K., D. W. Leung, et al. (2008). "Genetically encoded photoswitching of assembly through the Cdc42-WASP-Arp2/3 complex pathway." Proc Natl Acad Sci U S A 105(35): 12797-802.

  • Sauer, R. T., T. A. Baker, et al. (2009). "Engineering synthetic adaptors and substrates for controlled ClpXP degradation." J Biol Chem 284(33): 21848-55.

  • Sauer, R. T., T. A. Baker, et al. (2009). "Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine." Cell 139(4): 744-56.

  • Sauer, R. T., T. A. Baker, et al. (2010). "Control of substrate gating and translocation into ClpP by channel residues and ClpX binding." J Mol Biol 39 (5): 707-18.

  • Sauer, R. T., T. A. Baker, et al. (2005). "Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines." Nature 437(7062): 1115-20.

  • Sauer, R. T., T. A. Baker, et al. (2006). "Engineering controllable protein degradation." Mol Cell 22(5): 701-7.

  • Sauer, R. T., T. A. Baker, et al. (2007). "Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery." J Biol Chem 282(15): 11465-73.

  • Schafer, E., T. Kunkel, et al. (1993). "In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B." Eur J Biochem 215(3): 587-94.

  • Su, Z., H. Li, et al. (2010). "A protease-based strategy for the controlled release of therapeutic peptides." Angew Chem Int Ed Engl 49(29): 4930-3.

  • Voigt, C. A., A. Levskaya, et al. (2005). "Synthetic biology: engineering Escherichia coli to see light." Nature 438(7067): 441-2.

  • Voigt, C. A., A. Levskaya, et al. (2009). "Spatiotemporal control of cell signalling using a light-switchable protein interaction." Nature 461(7266): 997-1001.

  • Zuber, P. and Y. Zhang (2007). "Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity." J Bacteriol 189(21):7669-80.