Team:Heidelberg/Project/miRNA Kit
From 2010.igem.org
(→Introduction) |
|||
Line 25: | Line 25: | ||
'''Binding site properties''' have an essential impact on miRNA-mRNA interaction [figure, short explanations on seed regions, flanking regions, spacers, mismatches and resulting bulges]. Some functionally important parts of miRNAs have been described in literature, such as the seed region (Grimson et al., 2007; Bartel, 2009). It is defined as a region of seven nucleotides length that shows perfect pairing between the miRNA and its target sequence. The seed usually consists of the nucleotides on position 2-8 of a miRNA binding sites in the 5'UTR of the miRNA. Based on this simple principle, we randomized our miRNA binding sites between nucleotide 9 - 12 or 9 - 22 or tried rational exchanges of nucleotides to see how they would effect binding of the miRNA to its target mRNA, e. g. replacing one purin base with another versus replacing it with a pyrimidin base. Random and rational design of binding sites could thereby help to achieve a narrow range of knockdown. Therefore we wrote a programm - the [https://2010.igem.org/Team:Heidelberg/Modeling/miBSdesigner miBS designer] - for <i>in silico</i> construction of synthetic miRNA binding sites. The experimental applicability is still limited by redundant target sites and various miRNA expression patterns within the cells. This hampers distinct expression levels of the gene of interest (GOI) fused to the miRNA binding site. We (want to overcome) these limitations <i>in vitro</i> and <i>in vivo</i> with our '''synthetic miRNA Kit'''. | '''Binding site properties''' have an essential impact on miRNA-mRNA interaction [figure, short explanations on seed regions, flanking regions, spacers, mismatches and resulting bulges]. Some functionally important parts of miRNAs have been described in literature, such as the seed region (Grimson et al., 2007; Bartel, 2009). It is defined as a region of seven nucleotides length that shows perfect pairing between the miRNA and its target sequence. The seed usually consists of the nucleotides on position 2-8 of a miRNA binding sites in the 5'UTR of the miRNA. Based on this simple principle, we randomized our miRNA binding sites between nucleotide 9 - 12 or 9 - 22 or tried rational exchanges of nucleotides to see how they would effect binding of the miRNA to its target mRNA, e. g. replacing one purin base with another versus replacing it with a pyrimidin base. Random and rational design of binding sites could thereby help to achieve a narrow range of knockdown. Therefore we wrote a programm - the [https://2010.igem.org/Team:Heidelberg/Modeling/miBSdesigner miBS designer] - for <i>in silico</i> construction of synthetic miRNA binding sites. The experimental applicability is still limited by redundant target sites and various miRNA expression patterns within the cells. This hampers distinct expression levels of the gene of interest (GOI) fused to the miRNA binding site. We (want to overcome) these limitations <i>in vitro</i> and <i>in vivo</i> with our '''synthetic miRNA Kit'''. | ||
<br/> | <br/> | ||
- | + | After creating a binding site library and testing the miRNA-binding site interaction in vitro, we were able to compute an in [https://2010.igem.org/Team:Heidelberg/Modeling/miGUI silico model] based on a machine learning approach. | |
A more detailed description of the different binding sites we characterized can be found in our [https://2010.igem.org/Team:Heidelberg/Project/miMeasure measurements] page. | A more detailed description of the different binding sites we characterized can be found in our [https://2010.igem.org/Team:Heidelberg/Project/miMeasure measurements] page. | ||
The basic set-up of our fine tuning construct, miTuner, allows on the simultaneous expression of a synthetic miRNA and a gene of interest (GOI) that is fused with a binding site for this miRNA. Our kit comes with different parts that can be combined by choice, e. g. different mammalian promoters and characterized binding sites of specific properties. By chosing a certain binding site to tag the GOI, one can adjust the level of expression of this gene. In a proof of principle approach, we show the fine tuning capability of our set up using a [https://2010.igem.org/Team:Heidelberg/Notebook/Material_Methods#Dual_Luciferase_Assay Dual Luciferase Assay]. Here, firefly luciferase acts as the GOI targeted by a synthetic miRNA, while Renilla is used to normalize measurements. FIGURES | The basic set-up of our fine tuning construct, miTuner, allows on the simultaneous expression of a synthetic miRNA and a gene of interest (GOI) that is fused with a binding site for this miRNA. Our kit comes with different parts that can be combined by choice, e. g. different mammalian promoters and characterized binding sites of specific properties. By chosing a certain binding site to tag the GOI, one can adjust the level of expression of this gene. In a proof of principle approach, we show the fine tuning capability of our set up using a [https://2010.igem.org/Team:Heidelberg/Notebook/Material_Methods#Dual_Luciferase_Assay Dual Luciferase Assay]. Here, firefly luciferase acts as the GOI targeted by a synthetic miRNA, while Renilla is used to normalize measurements. FIGURES |
Revision as of 14:45, 25 October 2010
|
|
|||