Team:UIUC-Illinois/Project

From 2010.igem.org

(Difference between revisions)
(Protocols!!)
Line 51: Line 51:
== Protocols!! ==
== Protocols!! ==
 +
 +
== Making Electro-Competent Cells ==
 +
<html>
 +
Materials:<br>
 +
• DH5alpha glycerol stock<br>
 +
• Two LB plates<br>
 +
• 5mL LB and 14ml round bottom polystyrene tube<br>
 +
• 500mL LB<br>
 +
• 1L chilled water<br>
 +
• 50mL conical vials<br>
 +
• 40mL of 10% Glycerol <br>
 +
• **Must reserve the table top centrifuge<br>
 +
Directions:<br>
 +
1. Streak out DH5alpha from glycerol stock; grow overnight<br>
 +
2. Re-streak your DH5alpha; grow overnight*<br>
 +
3. Pick colony and grow in 5mL LB overnight<br>
 +
4. Add 2.5mL of the DH5alpha overnight to 500mL of LB<br>
 +
5. Let grow 4-6 hours until the OD is >=0.5<br>
 +
6. Centrifuge 10min. at 8,000rpm at 4degC<br>
 +
7. Pour out supernatant and resuspend in 5mL ice-cold water. Then add 500mL cold water and mix well<br>
 +
8. Centrifuge 10 min. at 8,000rpm at 4degC<br>
 +
9. Pour out supernatant and resuspend in 5mL cold water. Then add 500mL cold water and mix well.<br>
 +
10. Centrifuge 10 min. at 8,000rpm at 4degC<br>
 +
11. Pour out supernatant and resuspend in 5mL cold water. Pour into 50mL Vial and add 40mL 10% glycerol<br>
 +
12. Centrifuge 10min. at 4,200rpm at 4degC. <br>
 +
13. Resuspend in 1mL 10% cold glycerol and mix.<br>
 +
14. Pour into micro-centrifuge tubes and store in -80degC<br>
 +
 +
 +
*This will remove all the glycerol from the cells.
== Results ==
== Results ==

Revision as of 18:08, 24 June 2010

Click to go to the Illinois home page

Contents

Overall project

CHECK OUT OUR PROJECT!!!
The 2010 Illinois iGEM Bioware team project involves the construction of a biological system that functions as a decoding nanofabricator. As a continuation of the previous Illinois iGEM Bioware project: The Bacterial Decoder, the decoding bionanofabricator will produce specifically structured, purified, metallic ores depending on the presence of metals in its environment. This system will also possess the capacity to produce metal alloys by analyzing the presence and combination of specific metals in the environment. This system will take advantage of metal-respiring and metal detoxifying microbes that possess the ability to reduce metals as terminal electron acceptors and/or reduce toxic forms of metals into insoluble, harmless forms. The decoding nanofabricator will emphasize the capacity of information processing in biological systems to perform human-define tasks in industrial, manufacturing, computing, and environmental applications.


Project Details

2010 Illinois iGEM Bioware Team Project Proposal: BioAlchemy

This year, the Illinois iGEM Bioware project will serve iGEM and Synthetic Biology in 4 facets: 1.) as the success of Synthetic Biology and iGEM is contingent upon the ability to build upon and reuse previous iGEM projects and parts, the Illinois iGEM team will be continuing the work of last year’s project: The Bacterial Decoder, while intending to incorporate additional parts from the Registry of Standard Parts into fine-tuning our final construct, 2.) as the doctrine of Synthetic Biology hopes to successfully create and modulate basic genetic regulation to perform human-defined functions, the Illinois iGEM team will continue to explore both transcriptional and post-transcriptional regulation as candidates for bi-stable genetic switches to be implemented into the Bacterial Decoder, 3.) in future hopes to create and modify biological systems to solve tomorrows problems today- in health, medicine, energy, environment, industry, etc., the Illinois iGEM team will use the metal-respiring and metal-detoxification systems in microbes to create a biological system that functions as a decoding nanofabricator to precipitate specifically structured metallic ores from soluble and often toxic metals found in its environment, and 4.) as the capacity of Synthetic Biology and iGEM is hinged upon the support from the larger public community, the Illinois iGEM team is prepared to facilitate educational sessions, surveys, and ethics panel’s, to better equip the public community to make informed decisions on topics in Synthetic Biology.

Bacterial Decoder and the Registry of Standard Parts Last year, the Illinois iGEM team worked to construct a decoder function in E. coli using genetic logic gates comprised of transcription factors and sRNAs. A decoder is a low-level computer architecture that produces a specific output or response depending on the combinations of 2n inputs. The team constructed some parts to this design, but failed to complete the final decoder construct in time for the 2009 iGEM Jamboree. Continuing members worked to construct the remaining parts for this decoder and collected data to verify the integrity of these parts. This year’s team intends to 1.) compile the parts to the decoder, 2.) optimize the system by integrating additional parts from the Standard Registry of Parts, and 3.) implement this function into an industrial and environmental application: a decoding bio-nanofabricator.

Synthetic Gene Networks in Synthetic Biology The engineering of biological systems that process information, materials, and energy holds great promise for developing solutions to many global challenges. The construction of a standard genetic regulator that demonstrates strong bi-stability and facile manipulation poses a significant hurdle to synthetic biologists. The iGEM team intends to look into the construction of artificial ribonucleic protein (RNP) complexes using bacterial sRNA as a model. These regulators will/may be used to construct the necessary biological logic gates in the decoder schematic.

Biomineralization and Biological Nanofabricators Many microbes and macrobes possess the ability to manipulate metals for 1.) detoxification purposes, 2.) usage as the terminal electron acceptor in cellular respiration, and 3.) utilization in intracellular functions such as magnetosome formation and enzymatic cofactors. These organisms exhibit the capacity to mineralize metals in specific, geometric, intracellular and extracellular formations. Some microorganisms have demonstrated the ability to mineralize metal alloys. The decoding bionanofabricator will precipitate metal ores depending on the presence of metals in the environment, producing metal alloys in the presence of multiple metals. Manipulated metals include gold, silver, iron, selenium, cobalt, nickel, and zinc.

Biomineralization in Synthetic Biology promises beneficial application to both manufacturing and biological systems. It proposes a eco-friendly, cost-efficient, precise, self-sustaining means for industrial nanofabrication while providing a protective coating for organisms that possess this ability.

Bioethics and Human Practices in Synthetic Biology As the Synthetic Biology community grows, major issues including the ethics of genetic engineering, the creation and manipulation of “life”, will need to be addressed. While the horizon of Synthetic Biology promises answers to a myriad of global questions and problems, it does bring with it the possibility of great destruction and terror. The iGEM team will 1.) determine the current understanding of Synthetic Biology of different population pools through the distribution of surveys, 2.) facilitate educational sessions for children, students, and professionals alike, while 3.) engaging in academic seminars with other Synthetic Biologists, iGEM teams, and leaders, to evaluate a proper course for future direction in policy, regulation, and education.



Part 2 ...

The Experiments

Part 3

Protocols!!

Making Electro-Competent Cells

Materials:
• DH5alpha glycerol stock
• Two LB plates
• 5mL LB and 14ml round bottom polystyrene tube
• 500mL LB
• 1L chilled water
• 50mL conical vials
• 40mL of 10% Glycerol
• **Must reserve the table top centrifuge
Directions:
1. Streak out DH5alpha from glycerol stock; grow overnight
2. Re-streak your DH5alpha; grow overnight*
3. Pick colony and grow in 5mL LB overnight
4. Add 2.5mL of the DH5alpha overnight to 500mL of LB
5. Let grow 4-6 hours until the OD is >=0.5
6. Centrifuge 10min. at 8,000rpm at 4degC
7. Pour out supernatant and resuspend in 5mL ice-cold water. Then add 500mL cold water and mix well
8. Centrifuge 10 min. at 8,000rpm at 4degC
9. Pour out supernatant and resuspend in 5mL cold water. Then add 500mL cold water and mix well.
10. Centrifuge 10 min. at 8,000rpm at 4degC
11. Pour out supernatant and resuspend in 5mL cold water. Pour into 50mL Vial and add 40mL 10% glycerol
12. Centrifuge 10min. at 4,200rpm at 4degC.
13. Resuspend in 1mL 10% cold glycerol and mix.
14. Pour into micro-centrifuge tubes and store in -80degC
*This will remove all the glycerol from the cells. == Results ==