Team:ULB-Brussels
From 2010.igem.org
(Difference between revisions)
(4 intermediate revisions not shown) | |||
Line 10: | Line 10: | ||
<tr> | <tr> | ||
<td align="center" valign="middle"><gh2> | <td align="center" valign="middle"><gh2> | ||
- | <strong> | + | <strong>Jamboree : checked ;-) |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</strong></gh2><br></td> | </strong></gh2><br></td> | ||
- | <td rowspan="2" align="center" valign="top"><h3> | + | <td rowspan="2" align="center" valign="top"><h3><a href="http://www.solvay.com/"><img src="https://static.igem.org/mediawiki/2010/e/e4/Solvay-logo.gif" width="150" /></a></h3> |
<p><a href="http://www.delphigenetics.com/"><img src="https://static.igem.org/mediawiki/2010/9/96/Logo_Delphi.png" alt="Delphi" width="110" height="153"/></a></p> | <p><a href="http://www.delphigenetics.com/"><img src="https://static.igem.org/mediawiki/2010/9/96/Logo_Delphi.png" alt="Delphi" width="110" height="153"/></a></p> | ||
<p><a href="http://www.ulb.ac.be/facs/sciences/"><img src="https://static.igem.org/mediawiki/2009/5/5d/Logo_ulb.png" width="116" height="102" /></a></p> | <p><a href="http://www.ulb.ac.be/facs/sciences/"><img src="https://static.igem.org/mediawiki/2009/5/5d/Logo_ulb.png" width="116" height="102" /></a></p> | ||
+ | <p><a href="http://www.ulb.ac.be/facs/polytech/"><img src="https://static.igem.org/mediawiki/2009/9/9f/Fac_polytech.gif" width="116" height="102" /></a></p> | ||
<p><a href="http://www.ulb.ac.be/brachet/"><img src="https://static.igem.org/mediawiki/2010/a/ae/Logo_Fond_Brachet.png" width="115" height="107" /></a></p> | <p><a href="http://www.ulb.ac.be/brachet/"><img src="https://static.igem.org/mediawiki/2010/a/ae/Logo_Fond_Brachet.png" width="115" height="107" /></a></p> | ||
- | <p><a href="http://www.wbi.be/"><img src="https://static.igem.org/mediawiki/2009/c/c6/Logo_WBI.jpg" /></a></p></td> | + | <p><a href="http://www.wbi.be/"><img src="https://static.igem.org/mediawiki/2009/c/c6/Logo_WBI.jpg" /></a></p> |
+ | <p><a href="http://www.vwr.com/"><img src="https://static.igem.org/mediawiki/2010/4/40/VWR2.jpg" width="100" /></a></p> | ||
+ | <p><a href="http://www.bioblock.com/"><img src="https://static.igem.org/mediawiki/2010/9/96/Logfisherr.jpg" width="100" /></a></p> | ||
+ | <p><a href="http://www.wbi.be/"></a></p> | ||
+ | <p> </p></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 37: | Line 29: | ||
<p>In this ever more energy-dependent world, where fossil fuel ressources become scarce and raise environmental issues, the search for green energy sources is a growing concern in both civil and scientific communities. In this context, hydrogen turns out to be an interesting alternative.</p> | <p>In this ever more energy-dependent world, where fossil fuel ressources become scarce and raise environmental issues, the search for green energy sources is a growing concern in both civil and scientific communities. In this context, hydrogen turns out to be an interesting alternative.</p> | ||
<p>However, current hydrogen production relies mostly on chemical processes, such as petroleum cracking or water electrolysis. In order to develop greener and more energy-efficient processes, the use of micro-organisms as biocatalysts for hydrogen production has been studied for many years. While no practical application has yet been achieved, nowadays the scientifical and technological advances allow further developments and opportunites in this field.</p> | <p>However, current hydrogen production relies mostly on chemical processes, such as petroleum cracking or water electrolysis. In order to develop greener and more energy-efficient processes, the use of micro-organisms as biocatalysts for hydrogen production has been studied for many years. While no practical application has yet been achieved, nowadays the scientifical and technological advances allow further developments and opportunites in this field.</p> | ||
- | <p>The actual use of dark fermentation to produce hydrogen attains very low yields, compared to other fermentative biofuel synthesis, e.g. methane or ethanol. We propose to design a genetically engineered E. Coli, with an improved natural hydrogen production pathway, using the organic compounds found in waste waters as substrate. In addition, we will implement various features to enable the strain to perform other tasks related to wastewater treatment, such as signaling metallic contamination, eliminating nitrogen compounds, or hindering hydrogen consumption by methanogenic bacteria. We will also set up a planned death system in order to prevent its proliferation outside the wastewater treatment plant.</p> | + | <p>The actual use of dark fermentation to produce hydrogen attains very low yields, compared to other fermentative biofuel synthesis, e.g. methane or ethanol. We propose to design a genetically engineered <i>E. Coli</i>, with an improved natural hydrogen production pathway, using the organic compounds found in waste waters as substrate. In addition, we will implement various features to enable the strain to perform other tasks related to wastewater treatment, such as signaling metallic contamination, eliminating nitrogen compounds, or hindering hydrogen consumption by methanogenic bacteria. We will also set up a planned death system in order to prevent its proliferation outside the wastewater treatment plant.</p> |
<h2>Abstract : Français</h2> | <h2>Abstract : Français</h2> | ||
Line 48: | Line 40: | ||
- | Actuellement, l'utilisation de la «fermentation sombre» (dark fermentation, par opposition à la photofermentation nécessitant de la lumière) pour produire de l'hydrogène n'atteint que de faibles rendements comparé aux autres méthodes fermentatives de production de biocarburants (principalement méthane et bioéthanol). Dans le cadre de la compétition iGEM (International Genetically Engineered Machine) organisée par le Massachusetts Institute of Technology , notre équipe ULB-Brussels propose la conception par ingénierie génétique d'une souche d'Escherichia coli dont la voie de production naturelle d'hydrogène a été améliorée. | + | Actuellement, l'utilisation de la «fermentation sombre» (dark fermentation, par opposition à la photofermentation nécessitant de la lumière) pour produire de l'hydrogène n'atteint que de faibles rendements comparé aux autres méthodes fermentatives de production de biocarburants (principalement méthane et bioéthanol). Dans le cadre de la compétition iGEM (International Genetically Engineered Machine) organisée par le Massachusetts Institute of Technology , notre équipe ULB-Brussels propose la conception par ingénierie génétique d'une souche d'<i>Escherichia coli</i> dont la voie de production naturelle d'hydrogène a été améliorée. |
Latest revision as of 21:50, 28 November 2010