Team:Virginia United

From 2010.igem.org

(Difference between revisions)
(Sponsors)
(Quorum Sensing Amplifiers and a Co-design Approach for Information Processing)
 
(119 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
+
<html xmlns="http://www.w3.org/1999/xhtml">
 +
<head>
 +
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 +
<title>igem</title>
 +
<link rel="stylesheet" type="text/css" href="http://artprintwebdesign.com/igem/ddlevelsmenu-base.css" />
 +
<link rel="stylesheet" type="text/css" href="http://artprintwebdesign.com/igem/ddlevelsmenu-topbar.css" />
 +
<link rel="stylesheet" type="text/css" href="http://artprintwebdesign.com/igem/ddlevelsmenu-sidebar.css" />
-
<html>
+
<script type="text/javascript" src="http://artprintwebdesign.com/igem/ddlevelsmenu.js">
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
-
This is a template page. READ THESE INSTRUCTIONS.
+
-
</div>
+
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2009.igem.org/Help:Template/Examples">HERE</a>.
+
-
</div>
+
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You <strong>MUST</strong> have a team description page, a project abstract, a complete project description, a lab notebook, and a safety page.  PLEASE keep all of your pages within your teams namespace. 
+
-
</div>
+
-
</div>
+
-
</html>
+
-
<!-- *** End of the alert box *** -->
 
-
==Sponsors==
 
-
<html>
 
-
<table width="100%">
 
-
<tr>
 
-
<td align="center">
 
-
        <a href="http://www.geneart.com/" target="_blank">
 
-
            <img src="https://static.igem.org/mediawiki/2010/a/a3/UNIPV_Pavia_Logo-1.gif"/>
 
-
        </a>
 
-
</td>
 
-
<td align="center">
 
-
        <a href="http://www.mrgene.com/" target="_blank">
 
-
            <img src="https://static.igem.org/mediawiki/2010/9/9b/UNIPV_Pavia_Logo.gif"/>
 
-
        </a>
 
-
</td>
 
-
</tr>
 
-
</table>
 
-
</html>
 
-
{|align="justify"
+
/***********************************************
-
.
+
* All Levels Navigational Menu- (c) Dynamic Drive DHTML code library (http://www.dynamicdrive.com)
-
|-
+
* This notice MUST stay intact for legal use
-
|
+
* Visit Dynamic Drive at http://www.dynamicdrive.com/ for full source code
-
<b><center>An Engineering Approach to an Environmental Biosensor</center></b>
+
***********************************************/
-
<br>
+
-
In engineering, it is recognized that there are various ways to successfully design a mechanism. Often, different designs are tested and compared given a set of metrics in order to assess the strengths and weaknesses of each option. This process is called co-design.  Since synthetic biology is truly a multi-disciplinary field, it is important that we incorporate techniques that have been proven successful in other well-established disciplines.  We decided to apply co-design while testing and evaluating the effectiveness of a multiple-compound biosensor detection process.
+
-
<br><br>
+
-
In order to compare our designs, we are implementing logic on three different regulatory levels of the cell. One approach utilizes the operator sites of regulatory promoters, hybridizing two promoters’ operator sites into a single co-sensing promoter. In order for the hybrid promoter to initiate transcription, both target compounds that control the operator sites must be present. The hybrid promoters are attached to a single fluorescent protein, so detection of both target compounds can be measured via fluorescence.
+
-
<br><br>
+
-
Another method utilizes fluorescent protein complementation. When a target molecule is detected by a cell, it will transcribe a non-fluorescent half of a protein. When another target molecule is detected, the other half of the fluorescent protein is transcribed.  Upon translation, the halves will bond together and fluoresce, reporting the presence of the two target compounds.
+
-
<br><br>
+
-
The final approach allows each of the sensory reporters to express a fluorescent protein in the presence of its target compound.  If multiple target compounds are detected by a culture, fluorescence spectroscopy is used to separate out the wavelengths of each fluorescent protein, which then determines what compounds are present in the system.
+
-
In all three designs we are amplifying the signal that each E. coli cell emits once it is exposed to the target compound with a quorum sensing system.  Each cell releases a signal when exposed to the target compound, which is then recognized by neighboring cells.  A fluorescent protein is attached to the promoter that recognizes the signal, establishing a more rapid, binary-like response time in the system.
+
-
<br><br>
+
-
We decided to evaluate our co-designs by developing a biosensor that detects the presence of mercury, copper, and arsenic in aquatic environments.  In small doses each metal may not individually be toxic to fish, but a combination of the metals, even if individually each metal is at a negligible volume, may still be hazardous to both the fish in such environments and the people that later consume those fish.
+
-
<br><br>
+
-
As a final product, we hope that the system can be utilized not just for testing aquatic toxicity levels, but can serve as a basis for a synthetic machinery that has interchangeable inputs and outputs so it can be used for other applications such as biosecurity. Additionally, with an interchangeable response, it is possible to not only implement a biosensor within this system, but in the future, bioremediation machinery could be applied as an output as well.
+
-
|[[Image:Virginia_United_team.png|right|frame|Your team picture]]
+
</script>
-
|-
+
-
|
+
-
|align="center"|[[Team:Virginia_United | Team Example]]
+
-
|}
+
-
<!--- The Mission, Experiments --->
 
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
<script src="../../Scripts/swfobject_modified.js" type="text/javascript"></script>
-
!align="center"|[[Team:Virginia_United|Home]]
+
<style type="text/css">
-
!align="center"|[[Team:Virginia_United/Team|Team]]
+
<!--
-
!align="center"|[https://igem.org/Team.cgi?year=2010&team_name=Virginia_United Official Team Profile]
+
body,td,th {
-
!align="center"|[[Team:Virginia_United/Project|Project]]
+
font-family: Arial, Helvetica, sans-serif;
-
!align="center"|[[Team:Virginia_United/Parts|Parts Submitted to the Registry]]
+
font-size: small;
-
!align="center"|[[Team:Virginia_United/Modeling|Modeling]]
+
}
-
!align="center"|[[Team:Virginia_United/Notebook|Notebook]]
+
body {
-
!align="center"|[[Team:Virginia_United/Safety|Safety]]
+
margin-top: -2px;
-
|}
+
background-color: #000;
 +
}
 +
a {
 +
font-size: small;
 +
color: #900;
 +
}
 +
a:visited {
 +
color: #F30;
 +
}
 +
a:hover {
 +
color: #F00;
 +
}
 +
-->
 +
</style>
 +
 
 +
</SCRIPT>
 +
 
 +
 
 +
 
 +
<script type="text/javascript">
 +
 
 +
  var _gaq = _gaq || [];
 +
  _gaq.push(['_setAccount', 'UA-18583781-1']);
 +
  _gaq.push(['_trackPageview']);
 +
 
 +
  (function() {
 +
    var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
 +
    ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
 +
    var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
 +
  })();
 +
 
 +
</script>
 +
 
 +
<body>
 +
 
 +
 
 +
<table width="960" border="0" align="center" cellpadding="0" cellspacing="0">
 +
  <tr>
 +
    <td colspan="2" bgcolor="#FFFFFF"><a name="home" id="home"></a></td>
 +
  </tr>
 +
  <tr>
 +
    <td colspan="2" bgcolor="#FFFFFF"><div id="ddtopmenubar" class="solidblockmenu">
 +
<ul>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United">HOME</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United/Team" rel="ddsubmenu1">TEAM</a></li>
 +
<li><a href="https://igem.org/Team.cgi?year=2010&team_name=Virginia_United" rel="ddsubmenu1">PROFILE</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United/Project" rel="ddsubmenu2">PROJECT</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United/Modeling"rel="ddsubmenu5">MODELING</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United/Parts"rel="ddsubmenu5">PARTS</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United/Notebook"rel="ddsubmenu4">NOTEBOOK</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United/Safety" rel="ddsubmenu3">SAFETY</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United/Human_Practices" rel="ddsubmenu3">HUMAN PRACTICES</a></li>
 +
<li><a href="https://2010.igem.org/Team:Virginia_United_/_Sponsors">SPONSORS</a></li>
 +
<li><a href="https://2010.igem.org/Team:_Virginia_United_/_Gallery"rel="ddsubmenu5">GALLERY</a></li>
 +
</ul>
 +
</div>
 +
</html>
 +
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 +
<embed src="http://artprintwebdesign.com/igem/banner-3.swf" quality="high" bgcolor="#ffffff" width="960" height="188" name="spinner" align="middle" allowScriptAccess="sameDomain" allowFullScreen="false" type="application/x-shockwave-flash" pluginspage="http://www.adobe.com/go/getflashplayer" /> 
 +
</html>
 +
[[Image:va-united-team-960.jpg|960px|thumb|center|frame]]
 +
'''
 +
<center>
 +
== '''Quorum Sensing Amplifiers and a Co-design Approach for Information Processing''' ==
 +
<BR>
 +
As the field of biological engineering grows, so too does the complexity of genetically engineered systems.  Fabricated metabolic pathways are becoming increasingly intricate and expansive:  how is one to know if the approach used to synthesize a pathway is necessarily the best approach?  Our group, composed of five institutions, strives to show that co-design, a common engineering practice used to evaluate relative efficiencies, can be implemented to select the best design for a system.  Using a biosensor as an application of carrying out co-design, we constructed three systems utilizing different mechanisms that can detect inputs and give an output correlating to which input(s) it senses.  To maintain consistency, our systems are designed to use quorum sensing to amplify signal transduction upon input detection.  This essentially acts as an on/off switch, allowing the system to be engineered to detect a certain input threshold and establishing a binary response.
 +
</center>
 +
 
 +
 
 +
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 +
<embed src="http://artprintwebdesign.com/igem/Pulse_Particles_AS3-green-100.swf" quality="high" bgcolor="#000000" width="960" height="100" name="spinner" align="middle" allowScriptAccess="sameDomain" allowFullScreen="false" type="application/x-shockwave-flash" pluginspage="http://www.adobe.com/go/getflashplayer" /> 
 +
</html>

Latest revision as of 03:27, 28 October 2010

igem

Va-united-team-960.jpg

Quorum Sensing Amplifiers and a Co-design Approach for Information Processing


As the field of biological engineering grows, so too does the complexity of genetically engineered systems. Fabricated metabolic pathways are becoming increasingly intricate and expansive: how is one to know if the approach used to synthesize a pathway is necessarily the best approach? Our group, composed of five institutions, strives to show that co-design, a common engineering practice used to evaluate relative efficiencies, can be implemented to select the best design for a system. Using a biosensor as an application of carrying out co-design, we constructed three systems utilizing different mechanisms that can detect inputs and give an output correlating to which input(s) it senses. To maintain consistency, our systems are designed to use quorum sensing to amplify signal transduction upon input detection. This essentially acts as an on/off switch, allowing the system to be engineered to detect a certain input threshold and establishing a binary response.