Team:UCSF

From 2010.igem.org

(Difference between revisions)
(Project Description)
 
(186 intermediate revisions not shown)
Line 1: Line 1:
-
[[Image:Thecave.JPG|950px|center]]
+
<html>
 +
<script>
 +
var Numbering="N1";
 +
</script>
 +
</html>
 +
{{Template:UCSF/BannerAndNav}}
 +
{{Template:UCSF/LeftStart}}
 +
<br>
 +
===Project Description===
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -- display:none>
+
Killer cells of the immune system identify cancer and pathogen-infected cells and kill them. These potent killers travel throughout the body, recognizing proteins and other molecules on the surface of cells. In order to differentiate between healthy and diseased cells, killer cells use a variety of receptors, which bind to specific ligands on the target cells’ surface. If the target cell is deemed potentially dangerous, the killer cell grips the target cell tightly and creates an immunological synapse at the site of adhesion. Within this immunological synapse, the killer cell releases cytotoxic granules to kill the target cell without harming nearby cells, triggering a directed apoptotic response.
 +
 
 +
Our team will focus on improving killer cells’ specificity and killing efficiency towards cancerous target cells. By using tools of synthetic biology, we hope to create powerful killing bio-machines to fight cancer. Our newly engineered synthetic devices would have the potential to enhance current adoptive cell-based immunotherapy for cancer patients.
 +
 
 +
<br>
<html>
<html>
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
<a href="https://2010.igem.org/Team:UCSF/Project/Precision"><img src="https://static.igem.org/mediawiki/2010/2/28/UCSF_precision_home_icon.png" width="208" border="0" alt="Greater Precision" />
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
</a>
-
This is a template page. READ THESE INSTRUCTIONS.
+
<a href="https://2010.igem.org/Team:UCSF/Project/Signaling"><img src="https://static.igem.org/mediawiki/2010/9/9a/UCSF_signaling_home_icon.png" width="208" border="0" alt="Stronger Signaling" />
 +
</a>
 +
<a href="https://2010.igem.org/Team:UCSF/Project/Arsenal" ><img src="https://static.igem.org/mediawiki/2010/3/35/UCSF_arsenal_home_icon.png" border="0" width="208" alt="Better Arsenal" />
 +
</a>
 +
<br><br>
 +
 
 +
</html>
 +
{{Template:UCSF/LeftEnd}}
 +
{{Template:UCSF/RightStart}}
 +
<html>
 +
<br><br>
 +
<h3 style="color:black;">TEAM</h3>
 +
<div align="center">
 +
<a href="https://2010.igem.org/Team:UCSF/Team"><img src="https://static.igem.org/mediawiki/2010/f/ff/Team_photo.png" /></a>
</div>
</div>
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
<br><br>
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2009.igem.org/Help:Template/Examples">HERE</a>.
+
 
 +
<h3 style="color:black;">SPONSORS</h3>
 +
<div align="center">
 +
<a href="https://2010.igem.org/Team:UCSF/Sponsors"><img src="https://static.igem.org/mediawiki/2010/3/38/Sponsors_2010.png" width="200px" /></a>
</div>
</div>
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
You <strong>MUST</strong> have a team description page, a project abstract, a complete project description, a lab notebook, and a safety page.  PLEASE keep all of your pages within your teams namespace. 
 
-
</div>
 
-
</div>
 
-
</html>
 
-
 
-
<!-- *** End of the alert box *** -->
 
-
 
 +
<br><br>
 +
<h5 style="color:black;">Follow us on <a href="http://twitter.com/#!/iGEM_UCSF">Twitter!</a></h5>
 +
</html>
-
{|align="justify"
 
-
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
 
-
|[[Image:UCSF_logo.png|200px|right|frame]]
 
-
|-
 
-
|
 
-
''Tell us more about your project.  Give us background.  Use this as the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
 
-
|[[Image:UCSF_team.png|right|frame|Your team picture]]
 
-
|-
 
-
|
 
-
|align="center"|[[Team:UCSF | Team Example]]
 
-
|}
 
-
<!--- The Mission, Experiments --->
 
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
{{Template:UCSF/RightEnd}}
-
!align="center"|[[Team:UCSF|Home]]
+
__NOTOC__
-
!align="center"|[[Team:UCSF/Team|Team]]
+
-
!align="center"|[https://igem.org/Team.cgi?year=2010&team_name=UCSF Official Team Profile]
+
-
!align="center"|[[Team:UCSF/Project|Project]]
+
-
!align="center"|[[Team:UCSF/Parts|Parts Submitted to the Registry]]
+
-
!align="center"|[[Team:UCSF/Modeling|Modeling]]
+
-
!align="center"|[[Team:UCSF/Notebook|Notebook]]
+
-
!align="center"|[[Team:UCSF/Safety|Safety]]
+
-
|}
+

Latest revision as of 22:27, 15 November 2010


Project Description

Killer cells of the immune system identify cancer and pathogen-infected cells and kill them. These potent killers travel throughout the body, recognizing proteins and other molecules on the surface of cells. In order to differentiate between healthy and diseased cells, killer cells use a variety of receptors, which bind to specific ligands on the target cells’ surface. If the target cell is deemed potentially dangerous, the killer cell grips the target cell tightly and creates an immunological synapse at the site of adhesion. Within this immunological synapse, the killer cell releases cytotoxic granules to kill the target cell without harming nearby cells, triggering a directed apoptotic response.

Our team will focus on improving killer cells’ specificity and killing efficiency towards cancerous target cells. By using tools of synthetic biology, we hope to create powerful killing bio-machines to fight cancer. Our newly engineered synthetic devices would have the potential to enhance current adoptive cell-based immunotherapy for cancer patients.


Greater Precision Stronger Signaling Better Arsenal