Team:Penn State/Safety
From 2010.igem.org
(→Safety) |
(→Safety) |
||
(7 intermediate revisions not shown) | |||
Line 22: | Line 22: | ||
!align="center"|[[Team:Penn_State/Project|Project]] | !align="center"|[[Team:Penn_State/Project|Project]] | ||
!align="center"|[[Team:Penn_State/Parts|Parts Submitted to the Registry]] | !align="center"|[[Team:Penn_State/Parts|Parts Submitted to the Registry]] | ||
- | |||
!align="center"|[[Team:Penn_State/Notebook|Notebook]] | !align="center"|[[Team:Penn_State/Notebook|Notebook]] | ||
!align="center"|[[Team:Penn_State/Human Practices|Human Practices]] | !align="center"|[[Team:Penn_State/Human Practices|Human Practices]] | ||
Line 32: | Line 31: | ||
==Safety== | ==Safety== | ||
- | + | Penn State iGEM tried to come up with some original answers to the serious safety issues that go hand-in-hand with microbiological research. | |
+ | |||
+ | |||
+ | 1. Would any of your project ideas raise safety issues in terms of researcher safety, public safety, or environmental safety? | ||
+ | |||
+ | Some real world applications of our project could potentially raise environmental safety issues, but our project design as we carried it out in the lab would be of no concern. For example, our concept deals with the use of quorum sensing in microorganisms to sense oxygen that would potentially indicate spoilage in food, wine, or medicine. In these real-world applications, extensive testing would be require to insure that the microorganisms and their modified circuitry were safe. In food and medical applications, it would be very important that the genetic circuits always behave as predicted. In our case, a laboratory strain of E. coli, which is generally recognized as safe, was used, and we did not work with any products that were going to be consumed. | ||
+ | |||
+ | |||
+ | 2. Do any of the new BioBrick parts (or devices) that you made this year raise any safety issues? | ||
+ | |||
+ | No, our new BioBrick parts do not raise any safety issues. Our new BioBrick parts consist of a ribosome binding site, oxygen promoters, and an anaerobic fluorescent protein. The rest of the parts added to the registry were composite parts which included these new parts and parts on the registry that are known to be safe. | ||
+ | |||
+ | |||
+ | 3. Is there a local biosafety group, committee, or review board at your institution? | ||
+ | |||
+ | Yes there is a local review board, which at our university is called the Institutional Biosafety Committee (IBC). In order to carry out our experiment on campus, we had to submit a proposal for the IBC to review. After the reviewing process, we were granted permission to carry out our experiment. Our work was conducted in a biosafety level one lab, which was inspected by the IBC with all team members present. We learned a lot from that experience. | ||
+ | |||
+ | |||
+ | 4. Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering? | ||
+ | |||
+ | In addition to meeting our own school’s safety requirements, iGEM students should be required to take an online course provided by iGEM to standardize training for all participating students across the globe. | ||
+ | |||
+ | The Event Tree Analysis and Fault Tree Analysis described on the iGEM safety page are both promising ways to assure that biological circuits remain safe even when one part fails. This concept could be made a reality if the Parts Registry devoted a special page on their site to catalog certain arrangements of parts that produce unintended consequences. If every team were able to submit their findings to such a page, it would be easy to see trends in the data and make hypotheses as to which parts should not be used in conjunction in the future. | ||
All the students working on the project have successfully completed the Chemical and Hazardous Waste Handling course given by the Pennsylvania State University Environmental Health & Safety Office. | All the students working on the project have successfully completed the Chemical and Hazardous Waste Handling course given by the Pennsylvania State University Environmental Health & Safety Office. | ||
- | The | + | The certificates of completion can be seen below. |
- | [[ | + | <br>-[[Media:Andrew_safety.png|Andrew Kirk]] |
+ | <br>-[[Media:Erik_safety.png|Erik McCann]] | ||
+ | <br>-[[Media:Becky_safety.png|Rebecca Hennessey]] | ||
+ | <br>-[[Media:Lauren_safety.png|Lauren Rossi]] | ||
+ | <br>-[[Media:Anisha_safety.png|Anisha Katyal]] | ||
- | |||
- | Our Human Practices included a survey | + | Our Human Practices included a survey that was administered to human subjects. Because we wanted to share the data publicly, two members of our team completed the human subjects training in our university's Institutional Review Board. This training was completed on Citiprogram.com. The following are the links to the completion documents of the students who were involved with writing, circulating and analyzing the survey: |
<br>-[[Media:Citi_ler.pdf | Lauren Rossi]] | <br>-[[Media:Citi_ler.pdf | Lauren Rossi]] | ||
- | <br>-[[Media:CITI_completion_rch.pdf | | + | <br>-[[Media:CITI_completion_rch.pdf | Rebecca Hennessey]] |
Latest revision as of 00:15, 28 October 2010
Home | Team | Official Team Profile | Project | Parts Submitted to the Registry | Notebook | Human Practices | Safety | Sponsors |
---|
Safety
Penn State iGEM tried to come up with some original answers to the serious safety issues that go hand-in-hand with microbiological research.
1. Would any of your project ideas raise safety issues in terms of researcher safety, public safety, or environmental safety?
Some real world applications of our project could potentially raise environmental safety issues, but our project design as we carried it out in the lab would be of no concern. For example, our concept deals with the use of quorum sensing in microorganisms to sense oxygen that would potentially indicate spoilage in food, wine, or medicine. In these real-world applications, extensive testing would be require to insure that the microorganisms and their modified circuitry were safe. In food and medical applications, it would be very important that the genetic circuits always behave as predicted. In our case, a laboratory strain of E. coli, which is generally recognized as safe, was used, and we did not work with any products that were going to be consumed.
2. Do any of the new BioBrick parts (or devices) that you made this year raise any safety issues?
No, our new BioBrick parts do not raise any safety issues. Our new BioBrick parts consist of a ribosome binding site, oxygen promoters, and an anaerobic fluorescent protein. The rest of the parts added to the registry were composite parts which included these new parts and parts on the registry that are known to be safe.
3. Is there a local biosafety group, committee, or review board at your institution?
Yes there is a local review board, which at our university is called the Institutional Biosafety Committee (IBC). In order to carry out our experiment on campus, we had to submit a proposal for the IBC to review. After the reviewing process, we were granted permission to carry out our experiment. Our work was conducted in a biosafety level one lab, which was inspected by the IBC with all team members present. We learned a lot from that experience.
4. Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?
In addition to meeting our own school’s safety requirements, iGEM students should be required to take an online course provided by iGEM to standardize training for all participating students across the globe.
The Event Tree Analysis and Fault Tree Analysis described on the iGEM safety page are both promising ways to assure that biological circuits remain safe even when one part fails. This concept could be made a reality if the Parts Registry devoted a special page on their site to catalog certain arrangements of parts that produce unintended consequences. If every team were able to submit their findings to such a page, it would be easy to see trends in the data and make hypotheses as to which parts should not be used in conjunction in the future.
All the students working on the project have successfully completed the Chemical and Hazardous Waste Handling course given by the Pennsylvania State University Environmental Health & Safety Office.
The certificates of completion can be seen below.
-Andrew Kirk
-Erik McCann
-Rebecca Hennessey
-Lauren Rossi
-Anisha Katyal
Our Human Practices included a survey that was administered to human subjects. Because we wanted to share the data publicly, two members of our team completed the human subjects training in our university's Institutional Review Board. This training was completed on Citiprogram.com. The following are the links to the completion documents of the students who were involved with writing, circulating and analyzing the survey:
- Lauren Rossi
- Rebecca Hennessey