Team:UCSF/SandBox1

From 2010.igem.org

(Difference between revisions)
 
(17 intermediate revisions not shown)
Line 38: Line 38:
}
}
div#top-section{
div#top-section{
-
background-color:#3683D3;
+
background-color:#FF535D;
width:959px;
width:959px;
-
height: 40px;
+
height: 24px;
border:none;
border:none;
z-index:100;
z-index:100;
Line 59: Line 59:
     top: 0px;
     top: 0px;
     color:black;
     color:black;
-
}
 
-
 
-
.left-menu {
 
-
    left: -5px;
 
-
    text-align: left;
 
-
    text-transform: lowercase;
 
-
}
 
-
.right-menu {
 
-
    text-align: left;
 
-
    float:left;
 
}
}
Line 288: Line 278:
Our team will focus on improving NK cells’ specificity and killing efficiency towards certain cancer types. By using synthetic biology tools and logic gates’ design, we hope to create powerful killing biomachines for the fight against cancer. Our newly engineered synthetic devices would have the potential to enhance current adoptive cell-based immunotherapy for cancer patients.
Our team will focus on improving NK cells’ specificity and killing efficiency towards certain cancer types. By using synthetic biology tools and logic gates’ design, we hope to create powerful killing biomachines for the fight against cancer. Our newly engineered synthetic devices would have the potential to enhance current adoptive cell-based immunotherapy for cancer patients.
-
 
+
<html>
 +
<h4 id="andn">i. ANDN gate</h4>
 +
</html>
{{Template:UCSF/LeftEnd}}
{{Template:UCSF/LeftEnd}}
<html>
<html>
Line 302: Line 294:
</html>
</html>
-
'''RIGHT CONTENT'''<br>
+
__TOC__
-
replace this area with your content.
+
{{Template:UCSF/RightEnd}}
{{Template:UCSF/RightEnd}}
__NOTOC__
__NOTOC__

Latest revision as of 03:00, 28 October 2010

Project Description

Natural killer (NK) cells of the immune system identify cancer and virally-infected cells and kill them. These potent killers travel throughout the body, recognizing proteins and other molecules on the surface of cells. In order to differentiate between healthy and diseased cells, NK cells use a variety of receptors, which bind to specific ligands at the target cells’ surface. The balance between activating and inhibitory signals will tell the NK cell if the target cell is diseased or healthy, respectively. If the target cell is deemed potentially dangerous, the NK cell grips the target cell tightly and creates an immunological synapse at the site of adhesion. Within this immunological synapse, the NK cell releases cytotoxic granules to kill the target cell without harming any nearby cells allowing for a direct, apoptotic death.

Our team will focus on improving NK cells’ specificity and killing efficiency towards certain cancer types. By using synthetic biology tools and logic gates’ design, we hope to create powerful killing biomachines for the fight against cancer. Our newly engineered synthetic devices would have the potential to enhance current adoptive cell-based immunotherapy for cancer patients.

i. ANDN gate