Team:ESBS-Strasbourg/Project/Reference

From 2010.igem.org

(Difference between revisions)
 
(7 intermediate revisions not shown)
Line 363: Line 363:
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Results/Modelling">
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Results/Modelling">
Modeling</a></li>
Modeling</a></li>
-
                                <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Results/Device">Lighting device</a></li>
+
 
</ul>
</ul>
Line 377: Line 377:
                                 <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Notebook/Microfluidics">
                                 <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Notebook/Microfluidics">
Microfluidics</a></li>
Microfluidics</a></li>
 +
                                <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Results/Device">Lighting device</a></li>
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Notebook/Labbook">
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Notebook/Labbook">
Lab-book</a></li>
Lab-book</a></li>
Line 385: Line 386:
<li>
<li>
-
<p><br/><a>
+
<p><br/><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice">
HUMAN PRACTICE</a></p>
HUMAN PRACTICE</a></p>
                         <ul>
                         <ul>
-
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice/organisation">
+
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice#organisation">
Organisation</a></li>
Organisation</a></li>
-
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice/survey">
+
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice#survey">
Survey</a></li>
Survey</a></li>
-
                                 <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice/video">
+
                                 <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice#video">
The ClpX video</a></li>
The ClpX video</a></li>
-
                                 <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice/game">
+
                                 <li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice#game">
The ClpX game</a></li>
The ClpX game</a></li>
-
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Notebook/safety">
+
<li><a href="https://2010.igem.org/Team:ESBS-Strasbourg/Humanpractice#safety">
Project Safety</a></li>
Project Safety</a></li>
Line 472: Line 473:
<div id="leftmenu">
<div id="leftmenu">
<td width="210" rowspan=3 bgcolor="#414141" valign="top">
<td width="210" rowspan=3 bgcolor="#414141" valign="top">
-
<br>
+
 
<div class="heading">References</div>
<div class="heading">References</div>
<div class="desc">
<div class="desc">
 +
 +
<div id="windowbox" style="position:fixed; top:50%; left:20px; width:11%;">
 +
<span style="color:ivory;">
 +
&nbsp;&nbsp;
 +
<a href="https://2010.igem.org/Team:ESBS-Strasbourg/science">
 +
<img border="0" src="https://static.igem.org/mediawiki/2010/d/da/ESBS-Strasbourg-Clpx.gif" width="70" height="85" ></a>
 +
<br>
 +
Let me guide you</span>
</div>
</div>
Line 488: Line 497:
<ul>
<ul>
<font>
<font>
-
<li><p align="left">Ahlawat, S. and D. A. Morrison (2009). &quot;ClpXP degrades SsrA-tagged
+
<li><p ALIGN="LEFT">
-
proteins in Streptococcus pneumoniae.&quot; <u>J Bacteriol</u> <b>
+
[1] Bae, G., G. Choi </span>
-
191</b>(8): 2894-8.</font></p></li>
+
<span>(2009).&quot;Decoding of light signals by plant phytochromes and their interacting proteins.&quot; <u>Annu Rev Plant Biol </u><b>59</b>:281-311.</span></p></li>
-
<font>
+
<li><p ALIGN="LEFT">
-
<li><p align="left">Davis, J. H., T. A. Baker, et al. (2009). &quot;Engineering synthetic  
+
[2] Baker, T. A., R. T. Sauer, et al. </span>
-
adaptors and substrates for controlled ClpXP degradation.&quot; <u>J Biol Chem</u> <b>284</b>(33): 21848-55.</font></p></li>
+
<span>(2009).&quot;Engineering synthetic adaptors and substrates for controlled ClpXP  
-
<font>
+
degradation.&quot; <u>J Biol Chem </u><b>284</b>(33): 21848-55.</span></p></li>
-
<li><p align="left">Glynn, S. E., A. Martin, et al. (2009). &quot;Structures of  
+
<li><p ALIGN="LEFT">
-
asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+  
+
[3] Baker, T. A., R. T. Sauer, et al. </span>
-
protein-unfolding machine.&quot; <u>Cell</u> <b>139</b>(4):  
+
<span>(2009).  
-
744-56.</font></p></li>
+
&quot;Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a  
-
<font>
+
AAA+ protein-unfolding machine.&quot; <u>Cell</u> <b>139</b>(4): 744-56.</span></p></li>
-
<li><p align="left">Goldberg, A. L. (2003). &quot;Protein degradation and protection  
+
<li><p ALIGN="LEFT">
-
against misfolded or damaged proteins.&quot; <u>Nature</u> <b>426</b>(6968):  
+
[4] Baker, T. A., R. T. Sauer, et al. </span>
-
895-9.</p></li>
+
<span>(2010).
-
<li><p align="left">Griffith, K. L. and A. D. Grossman (2008). &quot;Inducible protein  
+
&quot;Control of substrate gating and translocation into ClpP by channel residues and
-
degradation in Bacillus subtilis using heterologous peptide tags and adaptor  
+
ClpX binding.&quot; <u>J Mol Biol</u> <b>399</b>(5): 707-18.</span></p></li>
-
proteins to target substrates to the protease ClpXP.&quot; <u>Mol Microbiol</u> <b>70</b>(4): 1012-25.</p></li>
+
<li><p ALIGN="LEFT">[5] Baker,
-
<li><p align="left">Khanna, R., E. Huq, et al. (2004). &quot;A novel molecular
+
T. A., R. T. Sauer, et al. (2005). &quot;Versatile modes of peptide recognition by
-
recognition motif necessary for targeting photoactivated phytochrome signaling
+
the AAA+ adaptor protein SspB.&quot; <u>Nat Struct Mol Biol</u> <b>12</b>(6): 520-5.</span></p></li>
-
to specific basic helix-loop-helix transcription factors.&quot; <u>Plant Cell</u> <b>16</b>(11): 3033-44.</p></li>
+
<li><p ALIGN="LEFT">[6] Baker,
-
<li><p align="left">Kunkel, T., K. Tomizawa, et al. (1993). &quot;In vitro formation of a
+
T. A., R. T. Sauer, et al. (2005). &quot;Rebuilt AAA + motors reveal operating
-
photoreversible adduct of phycocyanobilin and tobacco apophytochrome B.&quot; <u>Eur J
+
principles for ATP-fuelled machines.&quot; </span><u>
-
Biochem</u> <b>215</b>(3): 587-94.</p></li>
+
<span>
-
<li><p align="left">Lee, M. E., T. A. Baker, et al. (2010). &quot;Control of substrate
+
Nature</span></u><span>
-
gating and translocation into ClpP by channel residues and ClpX binding.&quot;  
+
<b>437</b>(7062): 1115-20.</span></p></li>
-
<u>J Mol Biol</u> <b>399</b>(5): 707-18.</p></li>
+
<li><p ALIGN="LEFT">
-
<li><p align="left">Levchenko, I., R. A. Grant, et al. (2005). &quot;Versatile modes of
+
[7] Baker, T. A., R. T. Sauer, et al. </span>
-
peptide recognition by the AAA+ adaptor protein SspB.&quot; <u>Nat Struct Mol Biol</u> <b>12</b>(6): 520-5.</p></li>
+
<span>(2006).
-
<li><p align="left">Levskaya, A., A. A. Chevalier, et al. (2005). &quot;Synthetic
+
&quot;Engineering controllable protein degradation.&quot; <u>Mol Cell</u> <b>22</b>(5):
-
biology: engineering Escherichia coli to see light.&quot; <u>Nature</u> <b>438</b>(7067): 441-2.</p></li>
+
701-7.</span></p></li>
-
<li><p align="left">Levskaya, A., O. D. Weiner, et al. (2009). &quot;Spatiotemporal
+
<li><p ALIGN="LEFT">
-
control of cell signalling using a light-switchable protein interaction.&quot;  
+
[8] Baker, T. A., R. T. Sauer, et al. </span>
-
<u>Nature</u> <b>461</b>(7266): 997-1001.</p></li>
+
<span>(2007).
-
<li><p align="left">Li, H., Y. Ma, et al. (2010). &quot;A protease-based strategy for the
+
&quot;Altered tethering of the SspB adaptor to the ClpXP protease causes changes in
-
controlled release of therapeutic peptides.&quot; <u>Angew Chem Int Ed Engl</u> <b>49</b>(29): 4930-3.</p></li>
+
substrate delivery.&quot; <u>J Biol Chem</u> <b>282</b>(15): 11465-73.</span></p></li>
-
<li><p align="left">Martin, A., T. A. Baker, et al. (2005). &quot;Rebuilt AAA + motors
+
<li><p ALIGN="LEFT">
-
reveal operating principles for ATP-fuelled machines.&quot; <u>Nature</u> <b>437</b>(7062): 1115-20.</p></li>
+
[9] Deisseroth, K., F. Zhang, et al. </span>
-
<li><p align="left">McGinness, K. E., T. A. Baker, et al. (2006). &quot;Engineering
+
<span>(2006).
-
controllable protein degradation.&quot; <u>Mol Cell</u> <b>22</b>(5):  
+
&quot;Channelrhodopsin-2 and optical control of excitable cells.&quot; <u>Nat Methods</u>
-
701-7.</p></li>
+
<b>3</b>(10): 785-92.</span></p></li>
-
<li><p align="left">McGinness, K. E., D. N. Bolon, et al. (2007). &quot;Altered tethering
+
<li><p ALIGN="LEFT">[10]
-
of the SspB adaptor to the ClpXP protease causes changes in substrate delivery.&quot;  
+
Fussenegger, M., M. Tigges, et al. (2009). &quot;A tunable synthetic mammalian
-
<u>J Biol Chem</u> <b>282</b>(15): 11465-73.</p></li>
+
oscillator.&quot; <u>Nature</u> <b>457</b>(7227): 309-12.</span></p></li>
-
<li><p align="left">Mukougawa, K., H. Kanamoto, et al. (2006). &quot;Metabolic
+
<li><p ALIGN="LEFT">[11]
-
engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or
+
Goldberg, A. L. (2003). &quot;Protein degradation and protection against misfolded or  
-
phycoerythrobilin chromophore in Escherichia coli.&quot; <u>FEBS Lett</u> <b>580</b>(5): 1333-8.</p></li>
+
damaged proteins.&quot; </span><u>
-
<li><p align="left">Pedersen, C. B., P. Bross, et al. (2003). &quot;Misfolding,
+
<span>
-
degradation, and aggregation of variant proteins. The molecular pathogenesis of
+
Nature</span></u><span>
-
short chain acyl-CoA dehydrogenase (SCAD) deficiency.&quot; <u>J Biol Chem</u> <b>278</b>(48): 47449-58.</p></li>
+
<b>426</b>(6968): 895-9.</span></p></li>
-
<li><p align="left">Tigges, M., T. T. Marquez-Lago, et al. (2009). &quot;A tunable
+
<li><p ALIGN="LEFT">[12]
-
synthetic mammalian oscillator.&quot; <u>Nature</u> <b>457</b>(7227):  
+
Gregersen, N., C. B. Pedersen, et al.(2003). &quot;Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency.&quot; <u>J Biol Chem</u> <b>278</b>(48): 47449-58.</span></p></li>
-
309-12.</p></li>
+
<li><p ALIGN="LEFT">[13]
-
<li><p align="left">Zhang, Y. and P. Zuber (2007). &quot;Requirement of the zinc-binding  
+
Grossman, A. D. and K. L. Griffith (2008). &quot;Inducible protein degradation in  
-
domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide  
+
Bacillus subtilis using heterologous peptide tags and adaptor proteins to target  
-
stress on ClpXP activity.&quot; <u>J Bacteriol</u> <b>189</b>(21):  
+
substrates to the protease ClpXP.&quot; <u>Mol Microbiol</u> <b>70</b>(4): 1012-25.</span></p></li>
-
7669-80.</font></p></li></ul>
+
<li><p ALIGN="LEFT">[14]
 +
Houry, W. A., U. A. Wojtyra, et al. (2003). &quot;The N-terminal zinc binding domain
 +
of ClpX is a dimerization domain that modulates the chaperone function.&quot; <u>J
 +
Biol Chem</u> <b>278</b>(49): 48981-90.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[15] Hughes, J., F. T. Landgraf, et al. </span>
 +
<span>(2001).
 +
&quot;Recombinant holophytochrome in Escherichia coli.&quot; <u>FEBS Lett</u> <b>508</b>(3):
 +
459-62.</span></p></li>
 +
<li><p ALIGN="LEFT">[16]
 +
Isacoff, E. Y. and P. Gorostiza (2008). &quot;Optical switches for remote and
 +
noninvasive control of cell signaling.&quot; <u>Science</u> <b>322</b>(5900): 395-9.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[17] Kohchi, T., K. Mukougawa, et al. </span>
 +
<span>(2006).  
 +
&quot;Metabolic engineering to produce phytochromes with phytochromobilin,
 +
phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli.&quot; <u>FEBS
 +
Lett</u> <b>580</b>(5): 1333-8.</span></p></li>
 +
<li><p ALIGN="LEFT">[18]
 +
Sauer, R.T., C.M. Farrell, et al. (2005). &quot;Cytoplasmic degradation of ssrA-tagged proteins.&quot; <u>Mol. Microbiol.</u> <b>57</b>(6): 1750-61.</span></p></li>
 +
<li><p ALIGN="LEFT">[19]
 +
Lagarias, J. C. and G. A. Gambetta (2001). &quot;Genetic engineering of phytochrome
 +
biosynthesis in bacteria.&quot; <u>Proc Natl Acad Sci U S A</u> <b>98</b>(19):  
 +
10566-71.</span></p></li>
 +
<li><p ALIGN="LEFT">[20]
 +
Lagarias, J. C., N. C. Rockwell, et al. (2006). &quot;Phytochrome structure and
 +
&nbsp;signaling mechanisms.&quot; </span><u>
 +
<span>
 +
Annu Rev Plant Biol</span></u><span>
 +
<b>57</b>: 837-58.</span></p></li>
 +
<li><p ALIGN="LEFT">[21]
 +
Lagarias, J.C., M.T. McDowell (2002). &quot;Analysis and reconstitution of
 +
phytochromes.&quot; <u>Heme, Chlorophyll, and Bilins: Methods and Protocols</u>,
 +
293-309</span></p></li>
 +
<li><p ALIGN="LEFT">[22]
 +
Maurizi, M. R., R. Grimaud, et al. (1998). &quot;Enzymatic and structural
 +
similarities between the Escherichia coli ATP-dependent proteases, ClpXP and
 +
ClpAP.&quot; <u>J Biol Chem</u> <b>273</b>(20): 12476-81.</span></p></li>
 +
<li><p ALIGN="LEFT">[23]
 +
Millar, A. J., O. Sorokina, et al. (2009). &quot;A switchable light-input,
 +
light-output system modelled and constructed in yeast.&quot; <u>J Biol Eng</u> <b>3</b>:
 +
15.</span></p></li>
 +
<li><p ALIGN="LEFT">[24]
 +
Moffat, K. and A. Moglich (2010). &quot;Engineered photoreceptors as novel
 +
optogenetic tools.&quot; <u>Photochem Photobiol Sci</u> <b>9</b>(10): 1286-300.</span></p></li>
 +
<li><p ALIGN="LEFT">[25]
 +
Moffat, K., A. Moglich, et al. (2010). &quot;Structure and function of plant photoreceptors.&quot; <u>Annu Rev Plant Biol</u> <b>61</b>: 21-47.</span></p></li>
 +
<li><p ALIGN="LEFT">[26]
 +
Moroder, L. and C. Renner (2006). &quot;Azobenzene as conformational switch in model
 +
peptides.&quot; <u>Chembiochem</u> <b>7</b>(6): 868-78.</span></p></li>
 +
<li><p ALIGN="LEFT">[27]
 +
Morrison, D. A. and S. Ahlawat (2009). &quot;ClpXP degrades SsrA-tagged proteins in
 +
Streptococcus pneumoniae.&quot; </span><u>
 +
<span>
 +
J Bacteriol</span></u><span>
 +
<b>191</b>(8): 2894-8.</span></p></li>
 +
<li><p ALIGN="LEFT">[28] Muir,  
 +
T. W. and A. B. Tyszkiewicz (2008). &quot;Activation of protein splicing with light
 +
in yeast.&quot; <u>Nat Methods</u> <b>5</b>(4): 303-5.</span></p></li>
 +
<li><p ALIGN="LEFT">[29]
 +
Quail, P. H. (2002). &quot;Phytochrome photosensory signalling networks.&quot; <u>Nat Rev
 +
Mol Cell Biol</u> <b>3</b>(2): 85-93.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[30] Quail, P. H., R. Khanna, et al. </span>
 +
<span>(2004). &quot;A
 +
novel molecular recognition motif necessary for targeting photoactivated
 +
phytochrome signaling to specific basic helix-loop-helix transcription factors.&quot;
 +
<u>Plant Cell</u> <b>16</b>(11): 3033-44.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[31] Quail, P. H., E. Schafer, et al. </span>
 +
<span>(2006). &quot;Photoactivated
 +
phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated
 +
degradation.&quot; </span><u>
 +
<span>
 +
Mol Cell</span></u><span>
 +
<b>23</b>(3): 439-46.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[32] Quail, P. H., S. Shimizu-Sato, et al. </span>
 +
<span>(2002). &quot;A
 +
light-switchable gene promoter system.&quot; <u>Nat Biotechnol</u> <b>20</b>(10):
 +
1041-4.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[33] Quail PH., D. Wagner et al. (1996) &quot;Two small spatially distinct regions of phytochrome B are required for efficient signaling rates.&quot; <u>Plant Cell</u> <b>8</b>:859–71.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[34] Park Y., H. Song (2008) &quot;A degradation signal recognition in prokaryotes.&quot; <u>J. Synchrotron Rad</u><b>15</b>:246–249.</span></p></li>
 +
<li><p ALIGN="LEFT">[35]
 +
Rosen, M. K., D. W. Leung, et al. (2008). &quot;Genetically encoded photoswitching of  
 +
actin assembly through the Cdc42-WASP-Arp2/3 complex pathway.&quot; <u>Proc Natl Acad
 +
Sci U S A</u> <b>105</b>(35): 12797-802.</span></p></li>
 +
<li><p ALIGN="LEFT"><span>[36] Schafer, E., T. Kunkel, et
 +
al. </span>
 +
<span>(1993).
 +
&quot;In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco
 +
apophytochrome B.&quot; <u>Eur J Biochem</u> <b>215</b>(3): 587-94.</span></p></li>
 +
<li><p ALIGN="LEFT"><span>[37] Schaffner, K., C. Hill, et  
 +
al. </span>
 +
<span>(1994).  
 +
&quot;Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and
 +
formation of photoactive chromoproteins by assembly with phycocyanobilin.&quot; <u>
 +
Eur J Biochem</u> <b>223</b>(1): 69-77.</span></p></li>
 +
<li><p ALIGN="LEFT">[38]
 +
Sejnowski, T. J. and M. U. Gillette (2005). &quot;Physiology. Biological clocks
 +
coordinately keep life on time.&quot; </span><u>
 +
<span>
 +
Science</span></u><span>
 +
<b>309</b>(5738): 1196-8.</span></p></li>
 +
<li><p ALIGN="LEFT">[39]
 +
Sharrock, R. A. (2008). &quot;The phytochrome red/far-red photoreceptor superfamily.&quot;
 +
<u>Genome Biol</u> <b>9</b>(8): 230.</span></p></li>
 +
<li><p ALIGN="LEFT">[40] Su,  
 +
Z., H. Li, et al. (2010). &quot;A protease-based strategy for the controlled release
 +
of therapeutic peptides.&quot; <u>Angew Chem Int Ed Engl</u> <b>49</b>(29): 4930-3.</span></p></li>
 +
<li><p ALIGN="LEFT">[41]
 +
Voigt, C. A., A. Levskaya, et al. (2005). &quot;Synthetic biology: engineering
 +
Escherichia coli to see light.&quot; </span><u>
 +
<span>
 +
Nature</span></u><span>
 +
<b>438</b>(7067): 441-2.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[42] Voigt, C. A., A. Levskaya, et al. </span>
 +
<span>(2009).  
 +
&quot;Spatiotemporal control of cell signaling using a light-switchable protein
 +
interaction.&quot; <u>Nature</u> <b>461</b>(7266): 997-1001.</span></p></li>
 +
<li><p ALIGN="LEFT">[43]
 +
Weaver, D. R. and S. M. Reppert (1997). &quot;Forward genetic approach strikes gold:
 +
cloning of a mammalian clock gene.&quot; </span><u>
 +
<span>
 +
Cell</span></u><span>
 +
<b>89</b>(4): 487-90.</span></p></li>
 +
<li><p ALIGN="LEFT">[44]
 +
</span>
 +
<span>Weitz, C. J., K. F.
 +
Storch, et al. </span>
 +
<span>(2002).
 +
&quot;Extensive and divergent circadian gene expression in liver and heart.&quot; <u>
 +
Nature</u> <b>417</b>(6884): 78-83.</span></p></li>
 +
<li><p ALIGN="LEFT">
 +
[45] Wu SH., JC. Lagarias JC. (2000) &quot;Defining the bilin lyase domain: lessons from the extended phytochrome superfamily.&quot; <u>Biochemistry</u><b>39</b>:13487–95.</span></p></li>
 +
<li><p ALIGN="LEFT">[46]
 +
</span>
 +
<span>Zuber, P. and Y.
 +
Zhang (2007). </span>
 +
<span>
 +
&quot;Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus  
 +
subtilis and effects of disulfide stress on ClpXP activity.&quot; </span><u>
 +
<span>
 +
J Bacteriol</span></u><span>
 +
<b>189</b>(21): 7669-80.</span></p></li>
 +
</ul>

Latest revision as of 22:56, 27 October 2010

{|

ESBS - Strasbourg


References
  
Let me guide you

References

  • [1] Bae, G., G. Choi (2009)."Decoding of light signals by plant phytochromes and their interacting proteins." Annu Rev Plant Biol 59:281-311.

  • [2] Baker, T. A., R. T. Sauer, et al. (2009)."Engineering synthetic adaptors and substrates for controlled ClpXP degradation." J Biol Chem 284(33): 21848-55.

  • [3] Baker, T. A., R. T. Sauer, et al. (2009). "Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine." Cell 139(4): 744-56.

  • [4] Baker, T. A., R. T. Sauer, et al. (2010). "Control of substrate gating and translocation into ClpP by channel residues and ClpX binding." J Mol Biol 399(5): 707-18.

  • [5] Baker, T. A., R. T. Sauer, et al. (2005). "Versatile modes of peptide recognition by the AAA+ adaptor protein SspB." Nat Struct Mol Biol 12(6): 520-5.

  • [6] Baker, T. A., R. T. Sauer, et al. (2005). "Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines." Nature 437(7062): 1115-20.

  • [7] Baker, T. A., R. T. Sauer, et al. (2006). "Engineering controllable protein degradation." Mol Cell 22(5): 701-7.

  • [8] Baker, T. A., R. T. Sauer, et al. (2007). "Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery." J Biol Chem 282(15): 11465-73.

  • [9] Deisseroth, K., F. Zhang, et al. (2006). "Channelrhodopsin-2 and optical control of excitable cells." Nat Methods 3(10): 785-92.

  • [10] Fussenegger, M., M. Tigges, et al. (2009). "A tunable synthetic mammalian oscillator." Nature 457(7227): 309-12.

  • [11] Goldberg, A. L. (2003). "Protein degradation and protection against misfolded or damaged proteins." Nature 426(6968): 895-9.

  • [12] Gregersen, N., C. B. Pedersen, et al.(2003). "Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency." J Biol Chem 278(48): 47449-58.

  • [13] Grossman, A. D. and K. L. Griffith (2008). "Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP." Mol Microbiol 70(4): 1012-25.

  • [14] Houry, W. A., U. A. Wojtyra, et al. (2003). "The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function." J Biol Chem 278(49): 48981-90.

  • [15] Hughes, J., F. T. Landgraf, et al. (2001). "Recombinant holophytochrome in Escherichia coli." FEBS Lett 508(3): 459-62.

  • [16] Isacoff, E. Y. and P. Gorostiza (2008). "Optical switches for remote and noninvasive control of cell signaling." Science 322(5900): 395-9.

  • [17] Kohchi, T., K. Mukougawa, et al. (2006). "Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli." FEBS Lett 580(5): 1333-8.

  • [18] Sauer, R.T., C.M. Farrell, et al. (2005). "Cytoplasmic degradation of ssrA-tagged proteins." Mol. Microbiol. 57(6): 1750-61.

  • [19] Lagarias, J. C. and G. A. Gambetta (2001). "Genetic engineering of phytochrome biosynthesis in bacteria." Proc Natl Acad Sci U S A 98(19): 10566-71.

  • [20] Lagarias, J. C., N. C. Rockwell, et al. (2006). "Phytochrome structure and  signaling mechanisms." Annu Rev Plant Biol 57: 837-58.

  • [21] Lagarias, J.C., M.T. McDowell (2002). "Analysis and reconstitution of phytochromes." Heme, Chlorophyll, and Bilins: Methods and Protocols, 293-309

  • [22] Maurizi, M. R., R. Grimaud, et al. (1998). "Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP." J Biol Chem 273(20): 12476-81.

  • [23] Millar, A. J., O. Sorokina, et al. (2009). "A switchable light-input, light-output system modelled and constructed in yeast." J Biol Eng 3: 15.

  • [24] Moffat, K. and A. Moglich (2010). "Engineered photoreceptors as novel optogenetic tools." Photochem Photobiol Sci 9(10): 1286-300.

  • [25] Moffat, K., A. Moglich, et al. (2010). "Structure and function of plant photoreceptors." Annu Rev Plant Biol 61: 21-47.

  • [26] Moroder, L. and C. Renner (2006). "Azobenzene as conformational switch in model peptides." Chembiochem 7(6): 868-78.

  • [27] Morrison, D. A. and S. Ahlawat (2009). "ClpXP degrades SsrA-tagged proteins in Streptococcus pneumoniae." J Bacteriol 191(8): 2894-8.

  • [28] Muir, T. W. and A. B. Tyszkiewicz (2008). "Activation of protein splicing with light in yeast." Nat Methods 5(4): 303-5.

  • [29] Quail, P. H. (2002). "Phytochrome photosensory signalling networks." Nat Rev Mol Cell Biol 3(2): 85-93.

  • [30] Quail, P. H., R. Khanna, et al. (2004). "A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors." Plant Cell 16(11): 3033-44.

  • [31] Quail, P. H., E. Schafer, et al. (2006). "Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation." Mol Cell 23(3): 439-46.

  • [32] Quail, P. H., S. Shimizu-Sato, et al. (2002). "A light-switchable gene promoter system." Nat Biotechnol 20(10): 1041-4.

  • [33] Quail PH., D. Wagner et al. (1996) "Two small spatially distinct regions of phytochrome B are required for efficient signaling rates." Plant Cell 8:859–71.

  • [34] Park Y., H. Song (2008) "A degradation signal recognition in prokaryotes." J. Synchrotron Rad15:246–249.

  • [35] Rosen, M. K., D. W. Leung, et al. (2008). "Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway." Proc Natl Acad Sci U S A 105(35): 12797-802.

  • [36] Schafer, E., T. Kunkel, et al. (1993). "In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B." Eur J Biochem 215(3): 587-94.

  • [37] Schaffner, K., C. Hill, et al. (1994). "Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin." Eur J Biochem 223(1): 69-77.

  • [38] Sejnowski, T. J. and M. U. Gillette (2005). "Physiology. Biological clocks coordinately keep life on time." Science 309(5738): 1196-8.

  • [39] Sharrock, R. A. (2008). "The phytochrome red/far-red photoreceptor superfamily." Genome Biol 9(8): 230.

  • [40] Su, Z., H. Li, et al. (2010). "A protease-based strategy for the controlled release of therapeutic peptides." Angew Chem Int Ed Engl 49(29): 4930-3.

  • [41] Voigt, C. A., A. Levskaya, et al. (2005). "Synthetic biology: engineering Escherichia coli to see light." Nature 438(7067): 441-2.

  • [42] Voigt, C. A., A. Levskaya, et al. (2009). "Spatiotemporal control of cell signaling using a light-switchable protein interaction." Nature 461(7266): 997-1001.

  • [43] Weaver, D. R. and S. M. Reppert (1997). "Forward genetic approach strikes gold: cloning of a mammalian clock gene." Cell 89(4): 487-90.

  • [44] Weitz, C. J., K. F. Storch, et al. (2002). "Extensive and divergent circadian gene expression in liver and heart." Nature 417(6884): 78-83.

  • [45] Wu SH., JC. Lagarias JC. (2000) "Defining the bilin lyase domain: lessons from the extended phytochrome superfamily." Biochemistry39:13487–95.

  • [46] Zuber, P. and Y. Zhang (2007). "Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity." J Bacteriol 189(21): 7669-80.