Team:Aberdeen Scotland/Equations

From 2010.igem.org

(Difference between revisions)
 
(24 intermediate revisions not shown)
Line 6: Line 6:
<h1>Equations</h1>
<h1>Equations</h1>
-
<p>Here we define the equations and parameters that describe the novel genetic toggle switch that works at the translational level. The switch allows mutually exclusive expression of either green fluorescent protein (GFP) or cyan
+
<p>Here we define the equations and parameters that describe the novel genetic toggle switch that works at the translational level. The switch allows mutually exclusive expression of either green fluorescent protein (GFP) or cyan fluorescent protein (CFP). The synthetic biological circuit is represented in Fig 1.</p>  
-
fluorescent protein (CFP). The synthetic biological circuit is represented in Fig. 1.</p>  
+
<br>
<br>
<center>
<center>
Line 17: Line 16:
<br>
<br>
-
<p>We can regulate the system when we add galactose or copper. Galactose will bind to the GAL promoter and activate the transcription of M1, allowing the system to express GFP. If we add copper instead of galactose, it will bind
+
<p>We can regulate the system when we add galactose or methionine. Galactose will bind to the GAL promoter and activate the transcription of M1, allowing the system to express GFP. If we remove methionine from the system  instead of adding galactose, it will bind to the MET1 promoter, the transcription of M2 will be activated, leading to the expression of CFP.</p>
-
to the CUP1 promoter, the transcription of M2 will be activated, leading to the expression of CFP. </p>
+
<br>
-
 
+
<p>From Fig 1 it can be seen that there is mutual inhibition of the translation of the two mRNAs. That is because the translated proteins can bind to the corresponding stem loop structures on the opposing construct.</p>
<p>From Fig 1 it can be seen that there is mutual inhibition of the translation of the two mRNAs. That is because the translated proteins can bind to the corresponding stem loop structures on the opposing construct.</p>
-
 
-
<p>For our initial conditions, we began with more GFP than CFP and thus the production of CFP was inhibited. When copper was added to the system, the rate of CFP production will increase and decrease for GFP. Eventually, we will see more CFP than GFP so the system will have switched. Once we have more CFP than GFP, galactose can then be added to switch back to an expression of GFP. </p>
 
-
 
-
<p>The N-Peptide and GFP strand has two MS2-Stem loops as we discovered that one single loop would not inhibit the production of CFP enough to achieve our switch.</p>
 
<br>
<br>
-
Fig. 1 shows the mutual inhibition of the translation of the two mRNAs by the proteins binding to the corresponding stem loop structures on the opposing construct.
+
<p>For our initial conditions, we began with more GFP than CFP and thus the production of CFP was inhibited. When methionine was added removed from the system, the rate of CFP production will increase and decrease for GFP. Eventually, we will see more CFP than GFP so the system will have switched. Once we have more CFP than GFP, galactose can then be added to switch back to an expression of GFP. </p>
<br>
<br>
-
<br>
+
<p>The N-Peptide and GFP strand has two MS2-Stem loops as we discovered that one single loop would not inhibit the production of CFP enough to achieve our switch.</p>
-
This means that if GFP is being expressed, the proteins will bind onto the M2 stem loops, thus preventing M2 from producing CFP. CFP exhibits the same behaviour, inhibiting the production of GFP.</p>
+
-
<br>
+
-
 
+
-
<h3>Equation Terms</h3>
+
-
<p>Each equation is composed of three terms: <b>generation</b>, <b>degradation</b>, and <b>base rate</b>
 
<br>
<br>
 +
<h3>Equation 1</h3>
<br>
<br>
-
<b>Generation:</b> There are two forms of the generation term: one for the mRNAs and one for the proteins (GFP and CFP).
 
-
<br>
 
-
For the mRNAs, the generation term is in the form of the <a href="http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics">Michaelis-Menten equation</a> with <a href="http://en.wikipedia.org/wiki/Cooperative_binding">Hill coefficients</a> to model the cooperativity of the binding affinities of the stem loops.
 
-
<br>
 
-
For the proteins (GFP and CFP), the Michaelis-Menten equation is modified to take into account the <a href="http://en.wikipedia.org/wiki/Non-competitive_inhibition">inhibition</a> of one protein on the other. This describes how GFP inhibits the generation of CFP and vice-versa.
 
-
<br>
 
-
<br>
 
-
<b>Degradation:</b> This term describes the degradation the component within the cell and is a function of the <a href="http://en.wikipedia.org/wiki/Rate_equation">reaction kinetics</a> for the breakdown of the component over time and the dilution that occurs as the cell divides.
 
-
<br>
 
-
<br>
 
-
<b>Base Rate:</b> This is the concentration of molecules present in the cell when the promoter or inhibitor is not activated.</p>
 
-
<br>
 
-
 
-
<h3>Equations and Parameters</h3>
 
-
 
-
<div align="left"><p><b>Equation (1)</b> describes the rate of change of the mRNA (mRNA1) that is transcribed from the galactose promoter.</p></div>
 
-
 
<div align="center">
<div align="center">
<table>
<table>
Line 66: Line 39:
</table>
</table>
</div>
</div>
-
 
+
<br>
 +
<p>This is the equation for the rate of change of the mRNA that is transcribed from the galactose promoter. The three terms represent production, degradation, and dilution respectively.</p>
 +
<br>
 +
<p>[GAL] represents the concentration of galactose that is added to the system. When galactose is added it binds to the promoter and activates the transcription of M1.
 +
<br>
 +
<br>
 +
[M1] is the concentration of mRNA that translates the N-peptide and GFP.</p>
 +
<br>
<div align="center">
<div align="center">
<table>
<table>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>[GAL]:<p></b></div>
+
     <div align="right"><b><p>Parameter<p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>represents the concentration of galactose that is added to the system; <br>when galactose is added, it binds to the promoter and activates <br>the transcription of M1<p>
+
     <p><b>Description</b></p>
     </td>
     </td>
   </tr>
   </tr>
-
  <tr>
+
    <tr>
-
    <td>
+
-
    <div align="right"><b><p>[M1]:<p></b></div>
+
-
    </td>
+
-
    <td>
+
-
    <p>is the concentration of mRNA that translates the N-peptide and GFP</p>
+
-
    </td>
+
-
  </tr>
+
-
  <tr>
+
     <td>
     <td>
     <div align="right"><b><p>λ<sub style="font-size:10px">1</sub>:<p></b></div>
     <div align="right"><b><p>λ<sub style="font-size:10px">1</sub>:<p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>constant representing the rate of transcription of the DNA that encodes <br>for the production of N-peptide and GFP</p>
+
     <p>Constant representing rate of transcription of the DNA that encodes for the production of N peptide and GFP</p>
     </td>
     </td>
   </tr>
   </tr>
Line 98: Line 70:
     </td>
     </td>
     <td>
     <td>
-
     <p>constant representing the rate of degradation of mRNA</p>
+
     <p>Constant representing rate of degradation of mRNA</p>
     </td>
     </td>
   </tr>
   </tr>
Line 111: Line 83:
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>k<sub style="font-size:10px">1</sub>:</p></b></div>
+
     <div align="right"><b><p>K<sub style="font-size:10px">1</sub>:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>dissociation constant the GAL promoter</p>
+
     <p>Dissociation constant for the GAL promoter</p>
     </td>
     </td>
   </tr>
   </tr>
Line 122: Line 94:
     </td>
     </td>
     <td>
     <td>
-
     <p>time constant representing rate of cellular division</p>
+
     <p>Time constant representing rate of cellular division</p>
     </td>
     </td>
   </tr>
   </tr>
</table>
</table>
</div>
</div>
 +
<br>
-
<br>
+
<h3>Equation 2</h3>
<br>
<br>
-
 
-
<div align="left"><p><b>Equation (2)</b> describes the rate of change of GFP that is translated from mRNA1.</p>
 
-
</div>
 
<div align="center">
<div align="center">
Line 146: Line 116:
</table>
</table>
</div>
</div>
-
 
+
<br>
 +
<p>This is the equation for the rate of change of protein that is translated from the mRNA for GFP. The three terms represent production, degradation, and dilution respectively.</p>
 +
<br>
 +
<p>[M1] is the concentration of mRNA that translates the N-peptide GFP.
 +
<br>
 +
<br>
 +
[GFP] represents the concentration of N-peptide and GFP.
 +
<br>
 +
<br>
 +
[CFP] represents the concentration of the MS2-protein and CFP.</p>
 +
<br>
<div align="center">
<div align="center">
<table>
<table>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>[M1]:<p></b></div>
+
     <div align="right"><b><p>Parameter:<p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>is the concentration of mRNA that translates the N-peptide GFP<p>
+
     <p><b>Description</b></p>
     </td>
     </td>
   </tr>
   </tr>
-
  <tr>
 
-
    <td>
 
-
    <div align="right"><b><p>[GFP]:<p></b></div>
 
-
    </td>
 
-
    <td>
 
-
    <p>represents the concentration of N-peptide and GFP</p>
 
-
    </td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>
 
-
    <div align="right"><b><p>[CFP]:</p></b></div>
 
-
    </td>
 
-
    <td>
 
-
    <p>represents the concentration of the MS2-protein and CFP
 
-
    </td>
 
-
  <tr>
 
   <tr>
   <tr>
     <td>
     <td>
Line 178: Line 142:
     </td>
     </td>
     <td>
     <td>
-
     <p>constant representing the rate of translation of the DNA that encodes <br>for the production of N-peptide and GFP</p>
+
     <p>Constant representing rate of translation of the mRNA that encodes for the production of N-peptide and GFP</p>
     </td>
     </td>
   </tr>
   </tr>
Line 186: Line 150:
     </td>
     </td>
     <td>
     <td>
-
     <p>constant representing the rate of degradation of GFP</p>
+
     <p>Constant representing rate of degradation of the GFP</p>
     </td>
     </td>
   </tr>
   </tr>
Line 199: Line 163:
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>k<sub style="font-size:10px">2</sub>:</p></b></div>
+
     <div align="right"><b><p>K<sub style="font-size:10px">2</sub>:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>dissociation constant of association between mRNA and amino acids</p>
+
     <p>Dissociation constant for the MS2-CFP protein to MS2 loop</p>
     </td>
     </td>
   </tr>
   </tr>
Line 210: Line 174:
     </td>
     </td>
     <td>
     <td>
-
     <p>time constant representing rate of cellular division</p>
+
     <p>Time constant representing rate of cellular division</p>
     </td>
     </td>
   </tr>
   </tr>
Line 217: Line 181:
<br>
<br>
 +
<h3>Equation 3</h3>
<br>
<br>
-
 
-
<div align="left"><p><b>Equation (3)</b> describes the rate of change of the mRNA (mRNA2) that is transcribed from the copper promoter.</p></div>
 
-
 
<div align="center">
<div align="center">
<table>
<table>
Line 233: Line 195:
</table>
</table>
</div>
</div>
 +
<br>
 +
<p>This is the equation for the rate of change of the mRNA that is transcribed from the copper promoter. The three terms represent production, degradation, and dilution respectively.</p>
 +
<br>
 +
<p>[Cu<sup style="font-size:10px">2+</sup>] is the concentration of the copper added to the system that binds to the CUP1 promoter and activates the transcription of M2.
 +
<br>
 +
<br>
 +
[M2] represents the concentration of mRNA that translates the MS2-protein and CFP. </p>
 +
<br>
<div align="center">
<div align="center">
<table>
<table>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>[Cu2+]:</p></b></div>
+
     <div align="right"><b><p>Parameter</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>is the concentration of the copper added to the <br>system that binds to the CUP1 promoter and activates <br>the transcription of M2</p>
+
     <p><b>Description</b></p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>[M2]:<p></b></div>
+
     <div align="right"><b><p>λ<sub style="font-size:10px">3</sup>:<p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>is the concentration of mRNA that translates the N-peptide and GFP</p>
+
     <p>Constant representing rate of transcription of the DNA that encodes for the production of the MS2-protein and CFP</p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>λ3:<p></b></div>
+
     <div align="right"><b><p>μ<sub style="font-size:10px">3</sub>:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>constant representing the rate of transcription of the DNA that encodes <br>for the production of MS2-peptide and CFP</p>
+
     <p>Constant representing rate of degradation of mRNA</p>
-
    </td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>
+
-
    <div align="right"><b><p>μ3:</p></b></div>
+
-
    </td>
+
-
    <td>
+
-
    <p>constant representing the rate of degradation of mRNA</p>
+
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>  
     <td>  
-
     <div align="right"><b><p>n3:<p></b></div>
+
     <div align="right"><b><p>n<sub style="font-size:10px">3</sub>:<p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>Hill coefficient<p>
+
     <p>Hill coefficient of the association between copper and the CUP1 promoter<p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>k3:</p></b></div>
+
     <div align="right"><b><p>K<sub style="font-size:10px">3</sub>:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>constant of association between copper and DNA</p>
+
     <p>Dissociation constant for Copper promoter</p>
     </td>
     </td>
   </tr>
   </tr>
Line 289: Line 251:
     </td>
     </td>
     <td>
     <td>
-
     <p>time constant representing rate of cellular division</p>
+
     <p>Time constant representing rate of cellular division</p>
     </td>
     </td>
   </tr>
   </tr>
Line 296: Line 258:
<br>
<br>
 +
 +
<h3>Equation 4</h3>
<br>
<br>
-
 
-
 
-
<div align="left"><p><b>Equation (4)</b> describes the rate of change of CFP that is translated from mRNA2.</p>
 
-
</div>
 
-
 
<div align="center">
<div align="center">
<table>
<table>
Line 314: Line 273:
</table>
</table>
</div>
</div>
 +
<br>
 +
<p>This is the equation for the rate of change of protein that is translated from the mRNA for CFP. The three terms represent production, degradation, and dilution respectively.</p>
 +
<br>
 +
<p>[M2] is the concentration of mRNA that translates to MS2-protein and CFP.
 +
<br>
 +
<br>
 +
[GFP] represents the concentration of the N-peptide and GFP.
 +
<br>
 +
<br>
 +
[CFP] represents the concentration of the MS2-protein and CFP.</p>
 +
<br>
<div align="center">
<div align="center">
<table>
<table>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>[M2]:<p></b></div>
+
     <div align="right"><b><p>Parameters<p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>is the concentration of mRNA that translates the MS2-protein and CFP<p>
+
     <p><b>Description</b></p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>[GFP]:<p></b></div>
+
     <div align="right"><b><p>λ<sub style="font-size:10px">4</sub>:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>represents the concentration of N-peptide and GFP</p>
+
     <p>Constant representing rate of translation of the mRNA that encodes for the production of MS2-protein and CFP</p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>[CFP]:</p></b></div>
+
     <div align="right"><b><p>μ<sub style="font-size:10px">4</sub>:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>represents the concentration of the MS2-protein and CFP
+
     <p>Constant representing rate of degradation of the CFP</p>
     </td>
     </td>
 +
  </tr>
   <tr>
   <tr>
 +
    <td>
 +
    <div align="right"><b><p>n<sub style="font-size:10px">4</sub>:<p></b></div>
 +
    </td>
 +
    <td>
 +
    <p>Hill coefficient of the GFP/Bbox stem loop association<p>
 +
    </td>
 +
  </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>λ4:</p></b></div>
+
     <div align="right"><b><p>K<sub style="font-size:10px">4</sub>:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>constant representing the rate of translation of the DNA that encodes <br>for the production of MS2-protein and CFP</p>
+
     <p>Dissociation constant for the N-Pep-GFP protein to the Bbox-stem loop</p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>μ4:</p></b></div>
+
     <div align="right"><b><p>T:</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>constant representing the rate of degradation of CFP</p>
+
     <p>time constant representing rate of cellular division</p>
     </td>
     </td>
   </tr>
   </tr>
 +
</table>
 +
</div>
 +
<br>
 +
<h1>Parameter Study</h1>
 +
<p>The parameter values were first estimated based on the literature <a href="#ref1"><sup style="font-size:10px">[1]</sup></a> and after the first estimation, a possible range of variation for each parameter was assigned, also based on literature. Then, we studied the bistability of the model depending on the parameter values that were varied in the above mentioned ranges. For more information, see <a href="https://2010.igem.org/Team:Aberdeen_Scotland/Probability">Parameter Space Analysis</a> and <a href="https://2010.igem.org/Team:Aberdeen_Scotland/Evolution">Directed Evolution</a>.</p>
 +
<br>
 +
<h1>Modification of the construct</h1>
 +
 +
<p>Some experimental difficulties were encountered with the copper construct which led to the use of a methionine promoter to substitute it. Methionine acts as an inhibitor of the promoter, so that equation 3 had to be substituted by the following equation:<p>
 +
<br>
 +
<center>
 +
<img src="https://static.igem.org/mediawiki/2010/f/f2/Meth.png">
 +
<br><br>
 +
<img src="https://static.igem.org/mediawiki/2010/7/75/MET_toggle_switch.png">
 +
</center>
 +
<br>
 +
<p>The behaviour of the switch can then be summarise in the following table:</p>
 +
<br>
 +
<div align="center">
 +
<table>
   <tr>
   <tr>
-
     <td>  
+
     <td>
-
     <div align="right"><b><p>n4:<p></b></div>
+
     <div align="right"><b><p>What is present in the system</p></b></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>Hill coefficient<p>
+
     <p><b>Protein(s) produced</b></p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>k4:</p></b></div>
+
     <div align="right"><p>Galactose and Methionine</p></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>constant of association between mRNA and amino acids</p>
+
     <p>GFP</p>
     </td>
     </td>
   </tr>
   </tr>
   <tr>
   <tr>
     <td>
     <td>
-
     <div align="right"><b><p>T:</p></b></div>
+
     <div align="right"><p>Galactose only</p></div>
     </td>
     </td>
     <td>
     <td>
-
     <p>time constant representing rate of cellular division</p>
+
     <p>GFP, CFP (doses dependent)</p>
 +
    </td>
 +
  </tr>
 +
  <tr>
 +
    <td>
 +
    <div align="right"><p>Methionine only</p></div>
 +
    </td>
 +
    <td>
 +
    <p>No GFP or CFP</p>
 +
    </td>
 +
  </tr>
 +
  <tr>
 +
    <td>
 +
    <div align="right"><p>No Galactose and no Methionine</p></div>
 +
    </td>
 +
    <td>
 +
    <p>CFP</p>
     </td>
     </td>
   </tr>
   </tr>
</table>
</table>
</div>
</div>
 +
<br>
 +
 +
<h1>References</h1>
 +
<a name="ref1"></a>
 +
<p><sup style="font-size:10px">[1]</sup> Beyer A, Hollunder J, Nasheuer HP, Wilhelm T. (2004), Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale, <i>Mol Cell Proteomics.</i>, Vol. 3, No.11, pp. 1083-1092.</p>
 +
<br>
 +
<p><sup style="font-size:10px">[2]</sup> Alon, U. (2006), An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman and Hall. </p>
 +
 +
<br><br>
<br><br>
Line 396: Line 419:
</tr>
</tr>
</table>
</table>
 +
 +
</html>
</html>
 +
{{:Team:Aberdeen_Scotland/Footer}}

Latest revision as of 20:29, 27 October 2010

University of Aberdeen - ayeSwitch - iGEM 2010

Equations

Here we define the equations and parameters that describe the novel genetic toggle switch that works at the translational level. The switch allows mutually exclusive expression of either green fluorescent protein (GFP) or cyan fluorescent protein (CFP). The synthetic biological circuit is represented in Fig 1.




Figure 1: Translation of DNA to mRNA.


We can regulate the system when we add galactose or methionine. Galactose will bind to the GAL promoter and activate the transcription of M1, allowing the system to express GFP. If we remove methionine from the system instead of adding galactose, it will bind to the MET1 promoter, the transcription of M2 will be activated, leading to the expression of CFP.


From Fig 1 it can be seen that there is mutual inhibition of the translation of the two mRNAs. That is because the translated proteins can bind to the corresponding stem loop structures on the opposing construct.


For our initial conditions, we began with more GFP than CFP and thus the production of CFP was inhibited. When methionine was added removed from the system, the rate of CFP production will increase and decrease for GFP. Eventually, we will see more CFP than GFP so the system will have switched. Once we have more CFP than GFP, galactose can then be added to switch back to an expression of GFP.


The N-Peptide and GFP strand has two MS2-Stem loops as we discovered that one single loop would not inhibit the production of CFP enough to achieve our switch.


Equation 1


(1)


This is the equation for the rate of change of the mRNA that is transcribed from the galactose promoter. The three terms represent production, degradation, and dilution respectively.


[GAL] represents the concentration of galactose that is added to the system. When galactose is added it binds to the promoter and activates the transcription of M1.

[M1] is the concentration of mRNA that translates the N-peptide and GFP.


Parameter

Description

λ1:

Constant representing rate of transcription of the DNA that encodes for the production of N peptide and GFP

μ1:

Constant representing rate of degradation of mRNA

n1:

Hill coefficient for the association between the galactose and the GAL promoter

K1:

Dissociation constant for the GAL promoter

T:

Time constant representing rate of cellular division


Equation 2


(2)


This is the equation for the rate of change of protein that is translated from the mRNA for GFP. The three terms represent production, degradation, and dilution respectively.


[M1] is the concentration of mRNA that translates the N-peptide GFP.

[GFP] represents the concentration of N-peptide and GFP.

[CFP] represents the concentration of the MS2-protein and CFP.


Parameter:

Description

λ2:

Constant representing rate of translation of the mRNA that encodes for the production of N-peptide and GFP

μ2:

Constant representing rate of degradation of the GFP

n2:

Hill coefficient of the CFP/MS2 stem loop association

K2:

Dissociation constant for the MS2-CFP protein to MS2 loop

T:

Time constant representing rate of cellular division


Equation 3


(3)


This is the equation for the rate of change of the mRNA that is transcribed from the copper promoter. The three terms represent production, degradation, and dilution respectively.


[Cu2+] is the concentration of the copper added to the system that binds to the CUP1 promoter and activates the transcription of M2.

[M2] represents the concentration of mRNA that translates the MS2-protein and CFP.


Parameter

Description

λ3:

Constant representing rate of transcription of the DNA that encodes for the production of the MS2-protein and CFP

μ3:

Constant representing rate of degradation of mRNA

n3:

Hill coefficient of the association between copper and the CUP1 promoter

K3:

Dissociation constant for Copper promoter

T:

Time constant representing rate of cellular division


Equation 4


(4)


This is the equation for the rate of change of protein that is translated from the mRNA for CFP. The three terms represent production, degradation, and dilution respectively.


[M2] is the concentration of mRNA that translates to MS2-protein and CFP.

[GFP] represents the concentration of the N-peptide and GFP.

[CFP] represents the concentration of the MS2-protein and CFP.


Parameters

Description

λ4:

Constant representing rate of translation of the mRNA that encodes for the production of MS2-protein and CFP

μ4:

Constant representing rate of degradation of the CFP

n4:

Hill coefficient of the GFP/Bbox stem loop association

K4:

Dissociation constant for the N-Pep-GFP protein to the Bbox-stem loop

T:

time constant representing rate of cellular division


Parameter Study

The parameter values were first estimated based on the literature [1] and after the first estimation, a possible range of variation for each parameter was assigned, also based on literature. Then, we studied the bistability of the model depending on the parameter values that were varied in the above mentioned ranges. For more information, see Parameter Space Analysis and Directed Evolution.


Modification of the construct

Some experimental difficulties were encountered with the copper construct which led to the use of a methionine promoter to substitute it. Methionine acts as an inhibitor of the promoter, so that equation 3 had to be substituted by the following equation:





The behaviour of the switch can then be summarise in the following table:


What is present in the system

Protein(s) produced

Galactose and Methionine

GFP

Galactose only

GFP, CFP (doses dependent)

Methionine only

No GFP or CFP

No Galactose and no Methionine

CFP


References

[1] Beyer A, Hollunder J, Nasheuer HP, Wilhelm T. (2004), Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale, Mol Cell Proteomics., Vol. 3, No.11, pp. 1083-1092.


[2] Alon, U. (2006), An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman and Hall.





Back to the Top