Team:Heidelberg/Tempalte3

From 2010.igem.org

(Difference between revisions)
 
(One intermediate revision not shown)
Line 651: Line 651:
<html>
<html>
-
<br><br><br><br>
+
<br><br>
-
<div class="t1">iGEM Heidelberg Mission 2010: miBricks</div><br><br>
+
<div class="t1"><a href="#">iGEM Heidelberg Mission 2010: miBricks</a></div><br>
<div id="projectabstract">The key to successful gene therapy is integration of tissue specificity and fine-tuned target gene expression. iGEM Team Heidelberg 2010 unlocks the world of synthetic microRNAs. We engineered a toolkit for standardized measurements of interactions between artificial miRNAs and their binding sites. Thus, the expression level of any gene of choice could be arbitrarily adjusted by employing the corresponding binding site design. To produce tissue specific miRNA gene shuttles, we developed an evolution-based method for synthesis of new adeno associated viruses. In the future, miBricks could open the doors to new Synthetic Biology based medical approaches. </div><br><br>
<div id="projectabstract">The key to successful gene therapy is integration of tissue specificity and fine-tuned target gene expression. iGEM Team Heidelberg 2010 unlocks the world of synthetic microRNAs. We engineered a toolkit for standardized measurements of interactions between artificial miRNAs and their binding sites. Thus, the expression level of any gene of choice could be arbitrarily adjusted by employing the corresponding binding site design. To produce tissue specific miRNA gene shuttles, we developed an evolution-based method for synthesis of new adeno associated viruses. In the future, miBricks could open the doors to new Synthetic Biology based medical approaches. </div><br><br>

Latest revision as of 15:04, 19 October 2010




The key to successful gene therapy is integration of tissue specificity and fine-tuned target gene expression. iGEM Team Heidelberg 2010 unlocks the world of synthetic microRNAs. We engineered a toolkit for standardized measurements of interactions between artificial miRNAs and their binding sites. Thus, the expression level of any gene of choice could be arbitrarily adjusted by employing the corresponding binding site design. To produce tissue specific miRNA gene shuttles, we developed an evolution-based method for synthesis of new adeno associated viruses. In the future, miBricks could open the doors to new Synthetic Biology based medical approaches.