Team:Stanford/Research

From 2010.igem.org

(Difference between revisions)
(Our Project: Detecting the Ratio of Two Chemicals)
Line 9: Line 9:
Both sensors are modular in that the input and output molecules can be changed without affecting the interior mechanism of the device. We see many applications for this device, including more efficiently regulated metabolic engineering, targeted drug delivery, detection of preterm labor (the ratio of different types of vaginal bacteria has been linked to spontaneous preterm birth, reference), and the discovery of other significant biological ratios.
Both sensors are modular in that the input and output molecules can be changed without affecting the interior mechanism of the device. We see many applications for this device, including more efficiently regulated metabolic engineering, targeted drug delivery, detection of preterm labor (the ratio of different types of vaginal bacteria has been linked to spontaneous preterm birth, reference), and the discovery of other significant biological ratios.
-
 
+
<!--
==Project Goals==
==Project Goals==
Line 43: Line 43:
#Response curve
#Response curve
#Response time
#Response time
-
 
+
-->
==Research==
==Research==

Revision as of 18:59, 16 August 2010

Our Project: Detecting the Ratio of Two Chemicals

The detection of a ratio of input chemicals is an important biological information processing application that has so far not been realized in a BioBrick standard device or, for the most part, within the larger synthetic biology community. While some sensors have been developed to detect pH (references), such sensors are highly limited in both their application and their output. For our project this year, the Stanford iGEM team decided to design and implement two different varieties of modular ratiometric sensor in order to allow future bioengineers to create more nuanced cellular systems.

The first sensor uses small RNA interference to calculate the difference in the concentrations of the two input chemicals. One input chemical (chemical A) binds to a promoter and causes the transcription of an mRNA coding for an output protein. The other input chemical (B) binds to a promoter and causes transcription of an sRNA, which is complementary to a target sequence overlapping the ribosome binding site of the mRNA sequence promoted by A. The sRNA then binds to the mRNA, preventing the ribosome from binding and synthesizing the output protein. In the ideal case, no output protein is produced if less A is present than B, and protein begins to be produced as soon as the concentration of A surpasses that of B. To change the threshold ratio detected by the sensor, multiple copies of the genes encoding either the mRNA or the sRNA can be placed downstream of the promoters.

The second sensor uses a transcription factor regulated by a kinase/phosphotase pair. In this system, the phosphorylated form of the transcription factor causes transcription of a gene coding for our output protein. The production of the transcription factor is under the control of a constitutive promoter, which maintains a basal concentration. The kinase that acts on the transcription factor is under the control of a promoter positively regulated by A. A phosphotase is similarly controlled by input B. By testing the concentration of output protein in relation to various concentrations of input chemicals, we plan to create an algorithm that will allow us to work backwards from a given concentration of output protein to deduce the ratio of the original concentrations of input chemicals.

Both sensors are modular in that the input and output molecules can be changed without affecting the interior mechanism of the device. We see many applications for this device, including more efficiently regulated metabolic engineering, targeted drug delivery, detection of preterm labor (the ratio of different types of vaginal bacteria has been linked to spontaneous preterm birth, reference), and the discovery of other significant biological ratios.

Research