Team:Cambridge
From 2010.igem.org
EmilyKnott (Talk | contribs) |
|||
(One intermediate revision not shown) | |||
Line 42: | Line 42: | ||
* Finalist | * Finalist | ||
* Winner of "Best Wiki" award (awarded jointly to Cambridge and [https://2010.igem.org/Team:Imperial_College_London '''Imperial College London''']) | * Winner of "Best Wiki" award (awarded jointly to Cambridge and [https://2010.igem.org/Team:Imperial_College_London '''Imperial College London''']) | ||
- | * Winner of the iGEMers Prize | + | * Winner of the iGEMers Prize (awarded jointly to five iGEM teams) |
* Awarded a Gold Medal | * Awarded a Gold Medal | ||
Please see [http://https://igem.org/Results '''iGEM official results page'''] to see how all the teams did. | Please see [http://https://igem.org/Results '''iGEM official results page'''] to see how all the teams did. | ||
Line 50: | Line 50: | ||
* [http://www.newscientist.com/article/mg20827885.000-glowing-trees-could-light-up-city-streets.html New Scientist article] | * [http://www.newscientist.com/article/mg20827885.000-glowing-trees-could-light-up-city-streets.html New Scientist article] | ||
* [http://www.dailymail.co.uk/sciencetech/article-1333334/How-trees-glow-like-fireflies-day-replace-streetlights.html Daily Mail article] | * [http://www.dailymail.co.uk/sciencetech/article-1333334/How-trees-glow-like-fireflies-day-replace-streetlights.html Daily Mail article] | ||
+ | * [http://www.telegraph.co.uk/topics/christmas/8215302/The-science-of-Christmas-we-could-grow-our-own-fairy-lights-say-the-tree-wise-men.html The Telegraph Article] | ||
[[Image:Cambridge_team_pictwo2010.jpg|center|frame|The team - in order - Anja Hohmann, Emily Knott, Hannah Copley, Will Handley, Theo Sanderson, Ben Reeve, Paul Masset, Peter Emmrich, Bill Collins]] | [[Image:Cambridge_team_pictwo2010.jpg|center|frame|The team - in order - Anja Hohmann, Emily Knott, Hannah Copley, Will Handley, Theo Sanderson, Ben Reeve, Paul Masset, Peter Emmrich, Bill Collins]] | ||
<html></div></html>{{:Team:Cambridge/Templates/footerMinimal}} | <html></div></html>{{:Team:Cambridge/Templates/footerMinimal}} |
Latest revision as of 13:17, 26 December 2010
We placed genes from fireflies and bioluminescent bacteria into E.coli. Codon optimisation and single amino acid mutagenesis allowed us to generate bright light output in a range of different colours. Future applications include and quantitative biosensors and biological alternatives to conventional lighting.
If you want a break from hard-core science, check out our Gibson Assembly music video.
You can also see view videos of our bacterial bubble lamp and project overview.
Over the course of the summer we built a set of BioBricks to allow bioluminescence in a wide range of colours which have applications both as reporters for biosensors and as natural light sources. We also developed software tools to aid construction of BioBrick parts and devices.
Project Firefly
We adopted a number of strategies to extend the use of firefly luciferase:
- Codon optimisation for increased light output
- Use of a luciferin regenerating enzyme.
- Mutagenesis to create a number of different colours
Project Vibrio
We complemented these firefly systems, which require the addition of the substrate luciferin, with light producing systems from Vibrio fischeri. We believe we have created the first BioBrick to emit light in normal E. coli strains without the addition of any external substrate.Tools
During our project we made extensive use of Gibson Assembly to manufacture our parts, and have submitted an RFC to the [http://bbf.openwetware.org/ BioBricks Foundation] to help future teams make best use of this technique.
Along with this, we also constructed a number of tools to assist the synthetic biologists of the future:
- Gibthon Construct Designer allows the user to enter a series of BioBrick or GenBank IDs in a specific order and computes the appropriate primers for Gibson Assembly.
- BioBrick → GenBank allows parts from the registry to be downloaded in .gb format, making them compatible with a wide range of biological software.
- The Ligation Calculator is a small calculator to help you work out the proportions to use for ligation in BioBrick assembly without having to worry about units.
- The E.glometer is a cheap, easily built, piece of electronics for measuring bioluminescence. It allows scientists without access to expensive plate readers to measure bacterial light output and has potential applications in quantitative biosensors.
Achievements in iGEM competition
- Finalist
- Winner of "Best Wiki" award (awarded jointly to Cambridge and Imperial College London)
- Winner of the iGEMers Prize (awarded jointly to five iGEM teams)
- Awarded a Gold Medal
Please see [http://https://igem.org/Results iGEM official results page] to see how all the teams did.
In the news
- [http://www.newscientist.com/article/mg20827885.000-glowing-trees-could-light-up-city-streets.html New Scientist article]
- [http://www.dailymail.co.uk/sciencetech/article-1333334/How-trees-glow-like-fireflies-day-replace-streetlights.html Daily Mail article]
- [http://www.telegraph.co.uk/topics/christmas/8215302/The-science-of-Christmas-we-could-grow-our-own-fairy-lights-say-the-tree-wise-men.html The Telegraph Article]