Team:NCTU Formosa/Model-TC
From 2010.igem.org
Mars311040 (Talk | contribs) |
Mars311040 (Talk | contribs) |
||
(12 intermediate revisions not shown) | |||
Line 20: | Line 20: | ||
<a class="sitelogo" href="#" title="Go to Start page"></a> | <a class="sitelogo" href="#" title="Go to Start page"></a> | ||
<div class="sitename"> | <div class="sitename"> | ||
- | <h1><a href=" | + | <h1><a href="https://2010.igem.org/Team:NCTU_Formosa#" title="Go to Start page">2010 NCTU Formosa <span style="font-weight:normal;font-size:50%;">prototype wiki<br>Made In Taiwan</span></a></h1> |
</div> | </div> | ||
Line 27: | Line 27: | ||
<div class="nav1"> | <div class="nav1"> | ||
<ul> | <ul> | ||
- | <li><a href="#" title="Go to Start page">Home</a></li> | + | <li><a href="https://2010.igem.org/Team:NCTU_Formosa#" title="Go to Start page">Home</a></li> |
<li><a href="#" title="Get to know who we are">About</a></li> | <li><a href="#" title="Get to know who we are">About</a></li> | ||
<li><a href="#" title="Get in touch with us">Contact</a></li> | <li><a href="#" title="Get in touch with us">Contact</a></li> | ||
Line 42: | Line 42: | ||
<div class="sitemessage"> | <div class="sitemessage"> | ||
<h1><strong>Mosquito • Intelligent • Terminator</strong></h1> | <h1><strong>Mosquito • Intelligent • Terminator</strong></h1> | ||
- | <h2>The new generation | + | <h2>The new generation environment friendly<br /> pesticide with more controlable<br /> factors and applications</h2> |
</div> | </div> | ||
Line 87: | Line 87: | ||
<ul> | <ul> | ||
<li><a href="https://2010.igem.org/Team:NCTU_Formosa/Model-TC">Low-temperature Release System</a></li> | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/Model-TC">Low-temperature Release System</a></li> | ||
- | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/Model- | + | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/Model-PC">Population Contral</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
Line 99: | Line 99: | ||
<li><a href="https://2010.igem.org/Team:NCTU_Formosa/Cry production">Cry production</a></li> | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/Cry production">Cry production</a></li> | ||
<li><a href="https://2010.igem.org/Team:NCTU_Formosa/Population Control">Population Control</a></li> | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/Population Control">Population Control</a></li> | ||
- | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/New idea"> | + | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/New idea">Construction of RBS library</a></li> |
<li><a href="https://2010.igem.org/Team:NCTU_Formosa/Project Safety">Project Safety</a></li> | <li><a href="https://2010.igem.org/Team:NCTU_Formosa/Project Safety">Project Safety</a></li> | ||
</ul> | </ul> | ||
Line 180: | Line 180: | ||
<!-- Navigation with grid style --> | <!-- Navigation with grid style --> | ||
<dl class="nav3-grid"> | <dl class="nav3-grid"> | ||
- | <dt><a href="https://2010.igem.org/Team:NCTU_Formosa/ | + | <dt><a href="https://2010.igem.org/Team:NCTU_Formosa/Model-TC"><span class="pagetitle"><strong>Low-temperature Release</strong> System</span></a></dt> |
- | <dt><a href="https://2010.igem.org/Team:NCTU_Formosa/ | + | <dt><a href="https://2010.igem.org/Team:NCTU_Formosa/Model-PC">Population Control </a></dt> |
</dl> | </dl> | ||
Line 191: | Line 191: | ||
<!-- Pagetitle --> | <!-- Pagetitle --> | ||
- | <h1 class="pagetitle">Modeling ><strong>Low-temperature Release</strong> System | + | <h1 class="pagetitle">Modeling ><strong>Low-temperature Release</strong> System Control Modeling</h1> |
- | <span line-height: | + | <span style="line-height:150%";> |
+ | <h1><strong>The dynamics model constructed for 'Low-temperature Release System'</strong></h1> | ||
+ | </span> | ||
<!-- Content unit - One column --> | <!-- Content unit - One column --> | ||
<h1 class="block">Motivation<a name="Out"> </a></h1> | <h1 class="block">Motivation<a name="Out"> </a></h1> | ||
<div class="column1-unit"> | <div class="column1-unit"> | ||
<br> | <br> | ||
- | <p><span style="font-weight:normal;font-size:150%;line-height:150%"> A low-temperature release system was designed and constructed in the Mosquito Intelligent Terminator (MIT or Terminator) to control target protein expression. A specific ribosome binding site (RBS) <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K115002">BBa_K115002</a> with high translation activity at high temperature(> | + | <p><span style="font-weight:normal;font-size:150%;line-height:150%"> A low-temperature release system was designed and constructed in the Mosquito Intelligent Terminator (MIT or Terminator) to control target protein expression. A specific ribosome binding site (RBS) <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K115002">BBa_K115002</a> with high translation activity at high temperature(> 37°C) and low translation activity at room temperature was used to design the temperature-dependent genetic circuit in E. coli, with a green fluorescent protein (GFP) used as the reporter protein (Fig. 1). We analyzed fluorescence intensity during E. coli growth at log phase and stationary phase at temperatures 25°C, 30°C, 30°C and 40°C. Our experimental results indicates that high temperature decreased the translation rate of the target protein, and this temperature-dependent genetic circuit can control the expression level of the target protein by the host cell's incubation temperature. However, the translational activity of the RBS<a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K115002">BBa_K115002</a> at different temperatures can not be quantified directly from experimental data. To overcome this problem, we provided a dynamic model which can quantitatively assess the translation strength of the RBS <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K115002">BBa_K115002</a> at temperatures 25°C, 30°C, 37°C and 40°C. </span> |
<br> | <br> | ||
<br> | <br> | ||
Line 212: | Line 214: | ||
<br><br> | <br><br> | ||
- | <img | + | <img src="https://static.igem.org/mediawiki/2009/0/07/TC_mod2.jpg" alt="Image description" width="427" height="125" title="Part" /> |
The first equation describes the temperature control in strand A (Fig. 1). Alpha-Temp is the production rates corresponding to transcriptional rate of constitutive promoter and the translation rate of the RBS<a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K115002"> BBa_K115002</a> which is a temperature sensitive post-transcriptional regulator. The second equation describes the concentration of GFP change with time. Alpha-B is production rates of the GFP, which are assumed to be given constants. To describe transition during log phase and stationary phase, the alpha-Temp and alpha-B and is assumed to zero when the Terminator in stationary phase. Gamma-TetR, and gamma-GFP are decay rates of the corresponding proteins. When bacteria divide, the molecular in a bacterium will be dilute. Because bacteria grow faster, the dilution rate d(t) is included in this model and can be calculated from OD ratio of medium (Fig. 2). For an inhibition of TetR protein, Hill function is an S-shaped curve which can be described in the form 1 / (1 +x^n) (Alon, 2007). The values of the kinetic parameters used in the simulation were initially obtained from the literature and experimental data. Data computations were performed with Matlab software. A program was written and used as a subroutine in Matlab for parameter optimization using nonlinear regression (Fig. 3) <br><br> | The first equation describes the temperature control in strand A (Fig. 1). Alpha-Temp is the production rates corresponding to transcriptional rate of constitutive promoter and the translation rate of the RBS<a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K115002"> BBa_K115002</a> which is a temperature sensitive post-transcriptional regulator. The second equation describes the concentration of GFP change with time. Alpha-B is production rates of the GFP, which are assumed to be given constants. To describe transition during log phase and stationary phase, the alpha-Temp and alpha-B and is assumed to zero when the Terminator in stationary phase. Gamma-TetR, and gamma-GFP are decay rates of the corresponding proteins. When bacteria divide, the molecular in a bacterium will be dilute. Because bacteria grow faster, the dilution rate d(t) is included in this model and can be calculated from OD ratio of medium (Fig. 2). For an inhibition of TetR protein, Hill function is an S-shaped curve which can be described in the form 1 / (1 +x^n) (Alon, 2007). The values of the kinetic parameters used in the simulation were initially obtained from the literature and experimental data. Data computations were performed with Matlab software. A program was written and used as a subroutine in Matlab for parameter optimization using nonlinear regression (Fig. 3) <br><br> | ||
</span></h1> | </span></h1> | ||
<p><span style="font-weight:normal;font-size:150%;line-height:150%"><img class= "center"src="https://static.igem.org/mediawiki/2009/0/04/TC_mod3.jpg" alt="Image description" width="604" title="Part" /></span></p> | <p><span style="font-weight:normal;font-size:150%;line-height:150%"><img class= "center"src="https://static.igem.org/mediawiki/2009/0/04/TC_mod3.jpg" alt="Image description" width="604" title="Part" /></span></p> | ||
- | <p align="center">Fig. 2: The OD ratio is increased faster in log phase than it in stationary phase. The dilution rate d(t) can be calculated from OD ratio and used in out model. </p> | + | <p align="center"><span style="font-weight:normal;font-size:130%;line-height:150%">Fig. 2: The OD ratio is increased faster in log phase than it in stationary phase. The dilution rate d(t) can be calculated from OD ratio and used in out model.</span> </p> |
<p><img class= "center"src="https://static.igem.org/mediawiki/2009/3/3c/TC_mod4.jpg" alt="Image description" width="604" title="Part" /></span></p> | <p><img class= "center"src="https://static.igem.org/mediawiki/2009/3/3c/TC_mod4.jpg" alt="Image description" width="604" title="Part" /></span></p> | ||
- | <p align="center">Fig. 3: The behavior of low temperature release circuit at 25°C, 30°C, 37 °C and 40°C. Experimental data (dot) and simulated results (line) of the model suggest this temperature-dependent genetic circuit can control the expression level of the target protein by the host cell’s incubation. The fitting results indicate our dynamic model can quantitatively assess the relative translational activity of RBS during log phase and stationary phase.</p> | + | <p align="center"><span style="font-weight:normal;font-size:150%;line-height:150%">Fig. 3: The behavior of low temperature release circuit at 25°C, 30°C, 37 °C and 40°C. Experimental data (dot) and simulated results (line) of the model suggest this temperature-dependent genetic circuit can control the expression level of the target protein by the host cell’s incubation. The fitting results indicate our dynamic model can quantitatively assess the relative translational activity of RBS during log phase and stationary phase.</span></p> |
<p align="center"> </p> | <p align="center"> </p> | ||
Line 227: | Line 229: | ||
<p><img class= "center"src="https://static.igem.org/mediawiki/2009/e/e4/TC_mod5.jpg" alt="Image description" title="Part" /></span></p> | <p><img class= "center"src="https://static.igem.org/mediawiki/2009/e/e4/TC_mod5.jpg" alt="Image description" title="Part" /></span></p> | ||
- | <p align="center">Fig. 4: The relative translation activity of this RBS (BBa_K115002) at 25C, 30C, 37 C and 40C estimated using least squares estimation from experimental data. This means our dynamic model can accurately quantify the translational activity of the RBS from experimental data.</p> | + | <p align="center"><span style="font-weight:normal;font-size:150%;line-height:150%">Fig. 4: The relative translation activity of this RBS (BBa_K115002) at 25C, 30C, 37 C and 40C estimated using least squares estimation from experimental data. This means our dynamic model can accurately quantify the translational activity of the RBS from experimental data.</span></p> |
</p> | </p> | ||
Latest revision as of 02:15, 28 October 2010
Modeling >Low-temperature Release System Control Modeling
The dynamics model constructed for 'Low-temperature Release System'
Motivation
A low-temperature release system was designed and constructed in the Mosquito Intelligent Terminator (MIT or Terminator) to control target protein expression. A specific ribosome binding site (RBS) BBa_K115002 with high translation activity at high temperature(> 37°C) and low translation activity at room temperature was used to design the temperature-dependent genetic circuit in E. coli, with a green fluorescent protein (GFP) used as the reporter protein (Fig. 1). We analyzed fluorescence intensity during E. coli growth at log phase and stationary phase at temperatures 25°C, 30°C, 30°C and 40°C. Our experimental results indicates that high temperature decreased the translation rate of the target protein, and this temperature-dependent genetic circuit can control the expression level of the target protein by the host cell's incubation temperature. However, the translational activity of the RBSBBa_K115002 at different temperatures can not be quantified directly from experimental data. To overcome this problem, we provided a dynamic model which can quantitatively assess the translation strength of the RBS BBa_K115002 at temperatures 25°C, 30°C, 37°C and 40°C.
Modeling and simulations
Low-temperature release system consists of two genes: TetR and GFP. The expression level of tetR protein is the input to the system, and the concentration of GFP is the output.
This system can be modeled by differential equations as follows.
The first equation describes the temperature control in strand A (Fig. 1). Alpha-Temp is the production rates corresponding to transcriptional rate of constitutive promoter and the translation rate of the RBS BBa_K115002 which is a temperature sensitive post-transcriptional regulator. The second equation describes the concentration of GFP change with time. Alpha-B is production rates of the GFP, which are assumed to be given constants. To describe transition during log phase and stationary phase, the alpha-Temp and alpha-B and is assumed to zero when the Terminator in stationary phase. Gamma-TetR, and gamma-GFP are decay rates of the corresponding proteins. When bacteria divide, the molecular in a bacterium will be dilute. Because bacteria grow faster, the dilution rate d(t) is included in this model and can be calculated from OD ratio of medium (Fig. 2). For an inhibition of TetR protein, Hill function is an S-shaped curve which can be described in the form 1 / (1 +x^n) (Alon, 2007). The values of the kinetic parameters used in the simulation were initially obtained from the literature and experimental data. Data computations were performed with Matlab software. A program was written and used as a subroutine in Matlab for parameter optimization using nonlinear regression (Fig. 3)
Fig. 2: The OD ratio is increased faster in log phase than it in stationary phase. The dilution rate d(t) can be calculated from OD ratio and used in out model.
Fig. 3: The behavior of low temperature release circuit at 25°C, 30°C, 37 °C and 40°C. Experimental data (dot) and simulated results (line) of the model suggest this temperature-dependent genetic circuit can control the expression level of the target protein by the host cell’s incubation. The fitting results indicate our dynamic model can quantitatively assess the relative translational activity of RBS during log phase and stationary phase.
Using least squares estimation from experimental data, the relative translational activity of this RBS BBa_K115002 at 25°C, 30°C, 37 °C and 40°C were estimated (Fig. 4).
Fig. 4: The relative translation activity of this RBS (BBa_K115002) at 25C, 30C, 37 C and 40C estimated using least squares estimation from experimental data. This means our dynamic model can accurately quantify the translational activity of the RBS from experimental data.
According to the fitting results (Fig. 3), the dynamic model successfully approximated the behavior of our low-temperature release system. The model equations present interesting mathematical properties that can be used to explore how qualitative features of the genetic circuit depend on reaction parameters. This method of dynamic modeling can be used to guide the choice of genetic ‘parts’ for implementation in circuit design in the future.
References
Alon, U. (2007) An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC.