Team:Cambridge/Human Practices

From 2010.igem.org

(Difference between revisions)
(Futures)
(Futures)
Line 14: Line 14:
The first group considered the impact of bacterial lighting at home. If ‘E.colights’ became available for household use how would they be received? What issues would have to be addressed for this to happen? We also considered the markets for other domestic products that might arise as a result and made a mock advert for ‘Bactobang’, an improved antibacterial agent to prevent the escape of bioluminescent synthetic organisms should their container become damaged. We also thought about the possibility of bioluminescence in art and fashion and presented our ideas to the rest of the team.
The first group considered the impact of bacterial lighting at home. If ‘E.colights’ became available for household use how would they be received? What issues would have to be addressed for this to happen? We also considered the markets for other domestic products that might arise as a result and made a mock advert for ‘Bactobang’, an improved antibacterial agent to prevent the escape of bioluminescent synthetic organisms should their container become damaged. We also thought about the possibility of bioluminescence in art and fashion and presented our ideas to the rest of the team.
-
[[Image:Light_polution.jpg|350px|thumb|left|Bioluminescence genes escaping]]
 
The second group envisaged ‘Bright Foods’ where the plants and animals that we eat might be engineered to have different colours of bioluminescence that would give an easily interpretable indication of nutritional content. The brightness of the luminescence would fade over time giving an indication of the freshness of the foodstuffs. This could also add an additional dimension to the experience of eating – perhaps restaurants would serve food in the dark so customers could fully appreciate the aesthetics of their luminescent meal. Food standards agencies might even insist that all food conforms to bioluminescent regulations such that foods with high levels of salt or saturated fat glowed particular colours to indicate this to customers. Perceptions might change such that people come to expect their food to glow and view dark food as spoiled and unappetizing. Bioluminescent cocktails could also become a fashionable drink in upmarket bars.
The second group envisaged ‘Bright Foods’ where the plants and animals that we eat might be engineered to have different colours of bioluminescence that would give an easily interpretable indication of nutritional content. The brightness of the luminescence would fade over time giving an indication of the freshness of the foodstuffs. This could also add an additional dimension to the experience of eating – perhaps restaurants would serve food in the dark so customers could fully appreciate the aesthetics of their luminescent meal. Food standards agencies might even insist that all food conforms to bioluminescent regulations such that foods with high levels of salt or saturated fat glowed particular colours to indicate this to customers. Perceptions might change such that people come to expect their food to glow and view dark food as spoiled and unappetizing. Bioluminescent cocktails could also become a fashionable drink in upmarket bars.
-
The third group considered how bioluminescence might slowly replace conventional lighting and the issues with intellectual property that this might cause. Initially, artificial bioluminescence could be a novelty – perhaps bioluminescent fish would be a popular pet. As our knowledge of synthetic biology grows, luminescent trees could become a real possibility; the commercial potential in replacing the street lights of the world could lead to strong competition with patents for bioluminescent systems. It could then be difficult to control and police the use of patented genetic systems; if the parts were put into fertile organisms then people might start illegally breeding their own light sources. We also considered containment issues and people’s attitudes towards them. As organisms engineered to be bioluminescent would not pose any considerable threat to public health or the environment, their escape might not be considered a serious issue. The amazement and awe inspired by natural bioluminescence might even lead to the escape of bioluminescent genes being welcomed by the public of the future – particularly one that had grown accustomed to this form of lighting in their homes and cities.
+
The third group considered how bioluminescence might slowly replace conventional lighting and the issues with intellectual property that this might cause. Initially, artificial bioluminescence could be a novelty – perhaps bioluminescent fish would be a popular pet. As our knowledge of synthetic biology grows, luminescent trees could become a real possibility; the commercial potential in replacing the street lights of the world could lead to strong competition with patents for bioluminescent systems. It could then be difficult to control and police the use of patented genetic systems; if the parts were put into fertile organisms then people might start illegally breeding their own light sources. We also considered containment issues and people’s attitudes towards them. As organisms engineered to be bioluminescent would not pose any considerable threat to public health or the environment, their escape might not be considered a serious issue. The amazement and awe inspired by natural bioluminescence might even  
 +
lead to the escape of bioluminescent genes being welcomed by the public of the future – particularly one that had grown accustomed to this form of lighting in their homes and cities.
 +
 
 +
[[Image:Light_polution.jpg|350px|thumb|left|Bioluminescence genes escaping]]
==Applications==
==Applications==

Revision as of 20:58, 27 October 2010