Team:TU Delft/Brainstorming
From 2010.igem.org
(Difference between revisions)
Line 16: | Line 16: | ||
margin: 5px 5px 5px 5px; | margin: 5px 5px 5px 5px; | ||
width: 200px; | width: 200px; | ||
- | |||
} | } | ||
.idea_desc { | .idea_desc { | ||
Line 300: | Line 299: | ||
<script type="text/javascript"> | <script type="text/javascript"> | ||
$(function() { | $(function() { | ||
- | |||
var hoverHandlerIn = function(e) { | var hoverHandlerIn = function(e) { | ||
$(".idea_desc" ,this).show(200); | $(".idea_desc" ,this).show(200); |
Revision as of 12:28, 12 July 2010
Brainstorming
Brainstorming method
We have tried to set up our brainstorming sessions in such a way that creativity was stimulated and no important areas where missed:
- First we enumerated problems which might be solvable by synthetic biology, then we gathered as many ways to solve them as possible. It's important to allow any idea to be mentioned here, without any cricital judging of team members yet.
- In later rounds, we voted on which ideas to work out, split up in teams and assessed the ideas in terms of feasibility, cost, coolness and how useful they could be for synthetic biology.
- We ended with 3 detailed project ideas and voted on them, and oil degradation was chosen!
Bacterial buffers
Yeast/bacteria that resist change in their environment (such as pH, temperature, pressure; looking at extremophiles) Possibilities:
- Temperature could be difficult, because we would have to change the temperature externally. Cooling down of an organism can have allot of problems.
- Metabolite production for endothermic reactions extracellular
- Antifreeze proteins (bind to ice)
- pH; this has never been done before
- Metal sequestering
- Many different biobricks; differentiation into different possible effects.
- Using characteristics of extremophiles
Bacterial eye
Coupling sensing of light to any output (electrical signal/ color/ growth/ etc etc)
Motility in yeast
Flagellum production in yeast.
- Would mean that you have to stir less hard in a fermentor (less cell death)
- Maybe yeast cell could move towards food when it has a flagellum, or would it just randomly move around?
Plastic soup in ocean
Substrate level measurement
High concentrations; low sensitivity
Low concentrations; highly sensitive cellular systems necessary
We would need a highly quantitative system
What would the output be?
In vivo metabolite measurements would be ideal, but how could this be possible?
Bacterial solar clock
sense light intensity and given an output
Light sensor genes, production of a colorful reaction
We already have a “biological clock”: the sun
Circadian clock/rhythm
Regulation for feast famine regime without needing to vary the actual substrate levels? This way you could use the organisms in which this is needed in combination with others in which other
Biofims / clusters / granules of bacteria
Improvement of DSP; avoid centrifugation etc
Not all the time, but after a signal at the end of a process making it easy to remove the cells from the solution
This could also occur using adhesion
Fast growing biofilms
Yeast mating factors
One cell that can produce both factors so we can have a homozygote
Used to avoid losing genes
Strain wars
Biological random generator
For cell differentiation?
Difference between spontaneous and radiation mutations
You can’t prove it’s truly random
Bacterial battery
Riboswitches
Can be used for any project we chose (method, not an idea)
Or could we make a number of biobricks for this?
Testing it is very difficult
Applicable for future iGEM teams
Too difficult? Challenge!
Calcium removal from water
Calcium accumulating bacteria? Is this even possible?
Polymer production with negative charge?
Algae bloom
Consumption of algae? Protozoa?
Stop or kill algae growth by MOs…
Degradation of algae to let go of biofuel?? (Shell sponsor?)
Sea water desalination
There are so many different salts in seawater
Remove those that are most abundant
Polymer production
Is being done at the TU right now
Cloning tool
Already been done..
Hydrogen sulfide removal
Algae that use H2S instead of oxygen, maybe we can use this?
Removal of Indool (toilet odor)
Convert it too a nice smelling compound?
Indool as a signal to produce “good” odor
Jasmine smell?
Bacteria that can melt ice on roads/ train rails
Anti-freeze proteins?
Trash color coding
Useful for trash sorting and recycling.
Biological filter
Sticky bacteria that catch all remains that go through the drain
Wouldn’t this clog up the drain even more?
Biofilm that filters
Lamp of bacteria
Fish have bacteria that illuminate (think of practical)
Fish have bacteria that illuminate (think of practical)
Diagnostic Gas detection
Measure levels of substances in patients exhaled breath to determine what the disease is
What would the signal be? Nitrate, hormones? When the input signal is a small molecule this could be used
What diseases could you detect in some ones breath? (cationic bodies as well)
Remove/detect medicines in (waste) water
Penicillin
(Small) Hormones
Bacteria that can find and sense medicines (resistant to antibiotics)
Fire retarders
Consumption of all the oxygen
Fire retardation chemicals?
You would need allot of MO’s
Fire retarders
Consumption of all the oxygen
Fire retardation chemicals?
You would need allot of MO’s
Hugo's Risk Scale
Our own standard for project risk assessment. Risk is represented with a value from 0 (no risk) to 10 (very risky)
- 0: Lac operon (or other piece of cake) + our biobrick
- 1: Less than 5 genes or biobricks (copy-paste) + our biobrick
- 2: Less than 10 genes or biobricks (copy-paste) + our biobrick
- 3: Biobrick engineering <5, improvement of things already done
- 4: Multi biobrick engineering >5, improvement of things already done
- 5: Site directed mutagenesis of several genes, results unknown a priori
- 6: Evolutionary engineering involved = sequencing
- 7: Protein engineering involved, results unknown a priori
- 8: A lot of genes and/or biobricks (>20), known genes in other species and characterized. Stress, social friction
- 9: A lot of genes and/or biobricks (>20), Known genes in other species, not fully characterized. Start a project one-eyed = stress, social friction, high chances of collapse
- 10: A lot of genes (>20), Unknown genes= characterization + sequencing + cloning. Start a project from nothing or partially blind, team-member losses + obituraries. Good side: paper in Nature or Nobel