Team:DTU-Denmark/Safety protocols
From 2010.igem.org
AnjaSander (Talk | contribs) |
AnjaSander (Talk | contribs) |
||
Line 179: | Line 179: | ||
<p align="justify">Amongst the most important genetic modifications is F-, which denotes the strain´s inability to develop F-pili. This prevents transfer of genetic information by horizontal gene transfer. Another important genetic modification is recA1, making the DH5α strain recombination deficient, preventing recombination of the plasmid into the E.coli genome so that the plasmid inserts are more stable. This leaves DH5α also very sensitive to UV-light as a result of the strains inability to undergo recombination, thereby impairing its DNA repair mechanism.</p> | <p align="justify">Amongst the most important genetic modifications is F-, which denotes the strain´s inability to develop F-pili. This prevents transfer of genetic information by horizontal gene transfer. Another important genetic modification is recA1, making the DH5α strain recombination deficient, preventing recombination of the plasmid into the E.coli genome so that the plasmid inserts are more stable. This leaves DH5α also very sensitive to UV-light as a result of the strains inability to undergo recombination, thereby impairing its DNA repair mechanism.</p> | ||
- | <p align="justify">With regard to its future use as a biosensor within manufacturing, environment, medical or food applications safety aspects have to be reconsidered and implemented in product development strategies. For example if our E.coli biosensor is used as a drug it will be necessary to prevent the bacteria spreading to other parts of the body or giving rise to an immune response. A possibility could be to encapsulate the bacteria in some way or/and to limit | + | <p align="justify">With regard to its future use as a biosensor within manufacturing, environment, medical or food applications safety aspects have to be reconsidered and implemented in product development strategies. For example if our E.coli biosensor is used as a drug it will be necessary to prevent the bacteria spreading to other parts of the body or giving rise to an immune response. A possibility could be to encapsulate the bacteria in some way or/and to limit the number of bacteria generations. |
<h1>Local biosafety group</h1> | <h1>Local biosafety group</h1> |
Revision as of 18:53, 26 October 2010
Home | The Team | The Project | Parts submitted | Results | Notebook | Blog |
Safety considerations of E.coli DHαMost E.coli strains are harmless and are a normal part of human gut flora, however, environmental strains such as serotype O157:H7, can cause serious food poisoning in humans. The genetic set up of the E.coli laboratory strain DH5α has been engineered in such a way, that these strains can be considered as safe laboratory strains, if standard safety protocols are followed. Moreover E.coli is one of the most used laboratory strains. This fact alone eliminates most safety issues with regard to laboratory applications, like on our case. The genetic characteristics of the DH5α strains are: F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK- mK+), λ– Amongst the most important genetic modifications is F-, which denotes the strain´s inability to develop F-pili. This prevents transfer of genetic information by horizontal gene transfer. Another important genetic modification is recA1, making the DH5α strain recombination deficient, preventing recombination of the plasmid into the E.coli genome so that the plasmid inserts are more stable. This leaves DH5α also very sensitive to UV-light as a result of the strains inability to undergo recombination, thereby impairing its DNA repair mechanism. With regard to its future use as a biosensor within manufacturing, environment, medical or food applications safety aspects have to be reconsidered and implemented in product development strategies. For example if our E.coli biosensor is used as a drug it will be necessary to prevent the bacteria spreading to other parts of the body or giving rise to an immune response. A possibility could be to encapsulate the bacteria in some way or/and to limit the number of bacteria generations. Local biosafety groupWe have a local biosafety group at our institution, and they have advised us to follow standard safety protocols for genetic engineering and molecular biology that are the standard practice at our institution. None of the BioBricks submitted in this project comprise any elevated danger of researcher safety, public safety, or environmental safety, if the standard practice is followed. References
|