Team:ESBS-Strasbourg/Project/Application
From 2010.igem.org
(Difference between revisions)
Line 491: | Line 491: | ||
<div class="heading">Applications:</div> | <div class="heading">Applications:</div> | ||
<br> | <br> | ||
- | As previously described, our degradation system consists of an engineered protease which can be activated by light impulses. This allows a tight control over the catalytic activity core enabling the modulation of protein function in a general fashion with the combined characteristics of specificity, high temporal precision and rapid reversibility | + | As previously described, our degradation system consists of an engineered protease which can be activated by light impulses. This allows a tight control over the catalytic activity core enabling the modulation of protein function in a general fashion with the combined characteristics of specificity, high temporal precision and rapid reversibility. |
<br> | <br> | ||
The system is easily adaptable to new targets proteins, the target-labeling only requires the fusion to the specific degradation tag and PIF. This offers a very cheap easy and applicable method for protein analysis. | The system is easily adaptable to new targets proteins, the target-labeling only requires the fusion to the specific degradation tag and PIF. This offers a very cheap easy and applicable method for protein analysis. | ||
<br><br> | <br><br> | ||
- | One of the major advantages is the "non invasive" induction of the protein degradation. Chemical genetics enable perturbations through the introduction of cell membrane-permeable small molecules, allowing the conditional regulation of activity through non-covalent and reversible interactions which is convenient for studies at the cellular level. The use of photolabile ‘‘caged’’ chemical compounds allows to affect subcellular targets in a second-timescale. Some chemical photoswitches such as azobenzene even offer reversible photo-control when attached to macromolecules | + | One of the major advantages is the "non invasive" induction of the protein degradation. Chemical genetics enable perturbations through the introduction of cell membrane-permeable small molecules, allowing the conditional regulation of activity through non-covalent and reversible interactions which is convenient for studies at the cellular level. The use of photolabile ‘‘caged’’ chemical compounds allows to affect subcellular targets in a second-timescale. Some chemical photoswitches such as azobenzene even offer reversible photo-control when attached to macromolecules (Renner and Moroder, 2006). However, the requirement to introduce exogenous, chemically modified materials into cells limits the use of these methods in biological applications. |
<br> | <br> | ||
Instead of the induction by chemical agents, the induction of our system is achieved by light impulses. Chemical agents can interfere with host cell metabolism thereby changing their behavior and impact on complex pathways which may create the impossibility of obtaining neutral results. The induction by light enables the studies of target proteins in a natural unaffected environment. | Instead of the induction by chemical agents, the induction of our system is achieved by light impulses. Chemical agents can interfere with host cell metabolism thereby changing their behavior and impact on complex pathways which may create the impossibility of obtaining neutral results. The induction by light enables the studies of target proteins in a natural unaffected environment. | ||
Line 505: | Line 505: | ||
Our system provides a very effective alternative to this approach. Due to the possibility to regulate protein degradation by light-guided on/off switching of the protease activity, it is a tool to control the level of target protein concentration. The common gene knock out methods do not provide any insight to the impact of varying protein concentration. Moreover, suppressions of a protein by recombination or CreLox methods are more difficult to set up, as the suppression is irreversible it can be lethal for the cells. | Our system provides a very effective alternative to this approach. Due to the possibility to regulate protein degradation by light-guided on/off switching of the protease activity, it is a tool to control the level of target protein concentration. The common gene knock out methods do not provide any insight to the impact of varying protein concentration. Moreover, suppressions of a protein by recombination or CreLox methods are more difficult to set up, as the suppression is irreversible it can be lethal for the cells. | ||
<br><br> | <br><br> | ||
- | This new system allows through its high turnover rate for proteins | + | This new system allows through its high turnover rate for proteins (Griffith and Grossman, 2008) a complete degradation of the protein, simulating a gene knockdown. After light induction with 660nm the system should rest in its active state until a light impulse of 730nm changes its back on its inactive state. So a permanent on switch simulates a gene knockdown as every protein is immediately degraded and a permanent off switch favors the native gene expression. |
<br>br> | <br>br> | ||
With alternating light impulses it should be also possible to adjust certain protein levels by switching the system on and off. This allows the control of complex protein dynamics in vivo as all protein levels can be adjusted to simulate the desired condition. | With alternating light impulses it should be also possible to adjust certain protein levels by switching the system on and off. This allows the control of complex protein dynamics in vivo as all protein levels can be adjusted to simulate the desired condition. |
Revision as of 09:40, 26 October 2010
{|
>