Team:Berkeley/Project/Vesicle Buster

From 2010.igem.org

(Difference between revisions)
Line 1: Line 1:
 +
<center>[[Image:Vesicle Buster Header.png | 950px]]</center>
__NOTOC__
__NOTOC__
<!-- Global templates. Should be included on every page -->
<!-- Global templates. Should be included on every page -->
Line 5: Line 6:
{{Berkeley_Menu}}
{{Berkeley_Menu}}
<!-- End global templates. Insert content below -->
<!-- End global templates. Insert content below -->
-
<center>[[Image:Vesicle Buster Header.png | 950px]]</center>
+
 
Vesicle Buster  
Vesicle Buster  
We derived the vesicle buster device from a construct built in the Anderson Lab and intended to be used in a mammalian system. There were several design challenges the vesicle buster had to satisfy in order to properly function in our delivery scheme. Because of the short time window between ingestion and digestion, the vesicle buster had to be constitutively expressed and ready to act upon self lysis. Stable expression of the vesicle buster was accomplished by placing it under the control of Pcon, a constitutive promoter. Since the bacteria stably express the vesicle buster, the device also cannot harm the bacteria and must act only on the choanoflagellate’s membrane. This specificity was satisfied by using PFO and PLC. PFO acts only on a cholesterol-based membrane and does not affect E. coli’s cell wall. PLC also targets phsopholipids found only in eukaryotic membranes. Finally, once the food vesicle is opened and its contents are released into the cytoplasm, PLC and PFO must be prevented from breaking down any other membrane and creating further damage to the choanoflagellate. For this reason, degradation tags were added to these enzymes.
We derived the vesicle buster device from a construct built in the Anderson Lab and intended to be used in a mammalian system. There were several design challenges the vesicle buster had to satisfy in order to properly function in our delivery scheme. Because of the short time window between ingestion and digestion, the vesicle buster had to be constitutively expressed and ready to act upon self lysis. Stable expression of the vesicle buster was accomplished by placing it under the control of Pcon, a constitutive promoter. Since the bacteria stably express the vesicle buster, the device also cannot harm the bacteria and must act only on the choanoflagellate’s membrane. This specificity was satisfied by using PFO and PLC. PFO acts only on a cholesterol-based membrane and does not affect E. coli’s cell wall. PLC also targets phsopholipids found only in eukaryotic membranes. Finally, once the food vesicle is opened and its contents are released into the cytoplasm, PLC and PFO must be prevented from breaking down any other membrane and creating further damage to the choanoflagellate. For this reason, degradation tags were added to these enzymes.

Revision as of 02:14, 25 October 2010

Vesicle Buster Header.png




Vesicle Buster We derived the vesicle buster device from a construct built in the Anderson Lab and intended to be used in a mammalian system. There were several design challenges the vesicle buster had to satisfy in order to properly function in our delivery scheme. Because of the short time window between ingestion and digestion, the vesicle buster had to be constitutively expressed and ready to act upon self lysis. Stable expression of the vesicle buster was accomplished by placing it under the control of Pcon, a constitutive promoter. Since the bacteria stably express the vesicle buster, the device also cannot harm the bacteria and must act only on the choanoflagellate’s membrane. This specificity was satisfied by using PFO and PLC. PFO acts only on a cholesterol-based membrane and does not affect E. coli’s cell wall. PLC also targets phsopholipids found only in eukaryotic membranes. Finally, once the food vesicle is opened and its contents are released into the cytoplasm, PLC and PFO must be prevented from breaking down any other membrane and creating further damage to the choanoflagellate. For this reason, degradation tags were added to these enzymes.