Team:ETHZ Basel/InformationProcessing

From 2010.igem.org

(Difference between revisions)
(Information Processing Overview)
(Information Processing Overview)
Line 8: Line 8:
<div class="thumbcaption"><div class="magnify"><a href="http://www.youtube.com/watch?v=1qQBmMcMZDI?hd=1" class="external" title="Enlarge"><img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" /></a></div><b>Information processing principle of E. lemming.</b> Tumbling / directed movement rates are monitored by image processing algorithms, which are linked to the light-pulse generator. This means that <i>E. coli</i> tumbling is induced or suppressed simply by pressing a light switch! This synthetic network enables control of single <i>E. coli</i> cells.</div></div></div></div>  
<div class="thumbcaption"><div class="magnify"><a href="http://www.youtube.com/watch?v=1qQBmMcMZDI?hd=1" class="external" title="Enlarge"><img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" /></a></div><b>Information processing principle of E. lemming.</b> Tumbling / directed movement rates are monitored by image processing algorithms, which are linked to the light-pulse generator. This means that <i>E. coli</i> tumbling is induced or suppressed simply by pressing a light switch! This synthetic network enables control of single <i>E. coli</i> cells.</div></div></div></div>  
</html>
</html>
-
To control the E. lemming,
+
Although the synthetic network we implemented makes the tumbling frequency of an E. coli cells dependent on red and far-red light, the biological part alone is not sufficient to control the swimming direction of the E. lemming. Thus, it is complemented by an in-silico network realizing a controller which automatically sends the light signals and by thus time-dependently changing the tumbling frequency o

Revision as of 17:40, 14 October 2010

Information Processing Overview

Information processing principle of E. lemming. Tumbling / directed movement rates are monitored by image processing algorithms, which are linked to the light-pulse generator. This means that E. coli tumbling is induced or suppressed simply by pressing a light switch! This synthetic network enables control of single E. coli cells.
Although the synthetic network we implemented makes the tumbling frequency of an E. coli cells dependent on red and far-red light, the biological part alone is not sufficient to control the swimming direction of the E. lemming. Thus, it is complemented by an in-silico network realizing a controller which automatically sends the light signals and by thus time-dependently changing the tumbling frequency o