Template:MIT menu

From 2010.igem.org

(Difference between revisions)
(New page: {{MIT_css}} <html> <head> <style type="text/css"> #bodyContent a[href^="mailto:"], .link-mailto { background: none; padding: -10px; } </style> <div id="graybar" style="z-index:1;" ></...)
Line 1: Line 1:
-
{{MIT_css}}
+
{{CM_css}}
<html>
<html>
<head>
<head>
-
<style type="text/css">
+
<style>
-
 
+
#topnav li.academics a {
-
#bodyContent a[href^="mailto:"], .link-mailto {
+
background-color: #2e2e91;
-
background: none;
+
-
padding: -10px;
+
}
}
-
 
+
#topnav li.academics ul {
 +
display: block;
 +
}
 +
#content {
 +
background-image: url('http://2010.igem.org/wiki/images/a/ae/Peacock_Drop.jpg');
 +
}
</style>
</style>
 +
</head>
 +
<body>
 +
<div class="header">
-
<div id="graybar" style="z-index:1;" ></div>
+
<div style="width:250px; margin: 10px; position: relative; top: -4px; left:-11px; display: block; float:right; padding: 7px; background-color: white;">
 +
<dl id="nav">
 +
<dt><b>Bacteria</b></dt>
 +
<dd>
 +
<ul>
 +
                        <li><a href="http://2010.igem.org/Team:MIT_toggle">Overview</a></li>
 +
<li><a href="http://2010.igem.org/Team:MIT_tconst">Toggle Construction</a></li>
 +
<li><a href="#">Characterization</a></li>
 +
</ul>
 +
</dd>
 +
<dt><b>Phage</b></dt>
 +
<dd>
 +
<ul>
 +
<li><a href="http://2010.igem.org/Team:MIT_phage">Introduction</a></li>
 +
<li><a href="http://2010.igem.org/Team:MIT_phage_background">Background</a></li>
 +
<li><a href="http://2010.igem.org/Team:MIT_phage_design">Design</a></li>
 +
<li><a href="http://2010.igem.org/Team:MIT_phage_construction">Construction</a></li>
 +
<li><a href="http://2010.igem.org/Team:MIT_phage_results">Results</a></li>
 +
<li><a href="http://2010.igem.org/Team:MIT_phage_context">Context</a></li>
-
<div id="header"> <a href="http://2010.igem.org/Team:MIT"></a>
+
</ul>
-
<div id="navigation">
+
</dd>
-
<div id="menu">
+
<dt><b>Mammalian</b></dt>
-
<ul>
+
<dd>
-
  <li id = "naviHome"><a class = "topMenu" href="http://2010.igem.org/Team:MIT">HOME</a>
+
<ul>
-
        </li>
+
                        <li><a href="#">Overview</a></li>
 +
<li><a href="#">Standard and Design</a></li>
 +
<li><a href="#">Experiments</a></li>
-
  <li id = "naviTeam"><a class = "topMenu" href="http://2010.igem.org/Team:MIT/Team">TEAM</a>
+
</ul>
-
<ul>
+
</dd>
-
  <li><a class = "dropMenu" href="http://2010.igem.org/Team:MIT/Team/Undergrads">Undergrads</a></li>
+
-
  <li><a class = "dropMenu" href="http://2010.igem.org/Team:MIT/Team/Instructors">Instructors</a></li>
+
</dl>
-
  <li><a class = "dropMenu" href="http://2010.igem.org/Team:MIT/Team/Advisors">Advisors</a></li>
+
-
  <li><a class = "dropMenu" href="http://2010.igem.org/Team:MIT/Team/Gallery">Gallery</a></li>
+
-
</ul>
+
-
    </li>
+
-
 
+
-
    <li id = "naviProject" ><a class = "topMenu" href="http://2010.igem.org/Team:MIT/Project">PROJECT</a>
+
-
<ul>
+
-
          <li><a class="dropMenu" href="#">Abstract</a></li>
+
-
          <li><a class = "dropMenu"  href="#">Overview</a></li>
+
-
<li><a class = "dropMenu" href="#">The Toggle Switch</a></li>
+
-
  <li><a class = "dropMenu" href="#">Bacterial Team</a></li>
+
-
  <li><a  class = "dropMenu" href="#">Mammalian Team</a></li>
+
-
  <li><a class = "dropMenu" href="#">Summary</a></li>
+
-
  <li><a class = "dropMenu" href="#">References</a></li>
+
-
          <li><a  class = "dropMenu" href="#">Acknowledgements</a></li>
+
-
</ul>
+
-
    </li>
+
-
 
+
-
  <li id = "naviNotebook"><a class = "topMenu" href="http://2010.igem.org/Team:MIT/Notebook">NOTEBOOK</a>
+
-
<ul>
+
-
  <li><a class = "dropMenu" href="#">Material &amp; Methods</a></li>
+
-
  <li><a class = "dropMenu" href="#">Biosafety</a></li>
+
-
          <li><a  class = "dropMenu" href="#">Journal Club</a></li>
+
-
</ul>
+
-
    </li>
+
-
 
+
-
  <li id ="naviParts"><a class = "topMenu" href="http://2010.igem.org/Team:MIT/Parts">PARTS</a>
+
-
      <ul>
+
-
          <li><a href="#">Characterization</a></li>
+
-
      </ul>
+
-
        </li>
+
-
 
+
-
  <li id = "naviSponsors"><a class = "topMenu" href="http://2010.igem.org/Team:MIT/Sponsors">SPONSORS</a>
+
-
  </li>
+
-
</ul>
+
-
</div>
+
-
</div>
+
</div>
</div>
-
</head><body>
+
<div id="unique" style="padding:0px; font-size: 14px; border: 1px solid black; margin:0px; background-color:transparent;">
-
<div id="stones">
+
<table width=650px style="background-color: white; margin-top:5px; padding: 10px;"><tr><td>
-
<a href="http://2010.igem.org/Main_Page"><img src="http://2010.igem.org/wiki/images/2/20/080410Igem-logo.png" height=95px width=112px></a></div>
+
<div class="bodybaby">abstract</div></td>
 +
<tr><td><br>Materials technology is a rapidly advancing field with research focusing on new methods of nanomaterial design. The biggest problem with nanomaterials is that the creators (us) are on a completely different length scale when compared to the materials we venture to create. Our project strives to take small steps in the direction of nanomaterials by utilizing cells--both bacterial and mammalian--and phages as units in developing a self-assembling, dynamic biomaterial.
 +
<br><br>
 +
Our goal is to create a system within cells that can convert a 2D design visible to the human eye into a 3D biostructure of phage or bone with the cross section of that same design. Our cells will be able to sense elements of the macro, human world, and output a living, self-assembled structure. Our mammalian team was motivated by the idea of the cellular “touch pad,” and is utilizing mechano-sensing promoters to allow mammalian cells to sense pressure and produce a controlled mineralization in response. The bacterial team is using the S.O.S. response from UV radiation and quorum sensing as stimuli to have bacteria secrete bacteriophage. Coated with zipper proteins, these bacteriophage can polymerize, cross-link and eventually form a living structure.  Both teams are integrating a toggle switch into the system, allowing us to consistently control the cell’s response to the stimuli.
 +
<br><br>
 +
By the end of the summer, we want our project to be able to showcase the capability of indirectly controlling the production of an organized biostructure.  With the integration of multiple visible markers, user-directed design will be able to stimulate the production of a multichromatic output on a bacterial lawn, along with a tangible biostructure, and mechanical stimulation of our mammalian cell line will induce controlled differentiation of our cells into bone. We hope to have developed two systems with the ability to form <i>living</i> three-dimensional biomaterials that retain their ability to reform into a different structure if given the correct input. </td>
 +
</table>
-
<div id="mainContent" class="ui-widget-content">
 
-
</div>
 
-
<div id="rightside" class = "ui-widget-content">
 
-
<div id="rightHeader"><wiheader>iGEM by numbers</wiheader>
 
</div>
</div>
-
<p></p>
 
</div>
</div>
-
 
+
</body>
-
<div id="minorRight">
+
-
 
+
-
<a href="http://www.facebook.com/pages/MIT-iGEM-2010/148399295171024?v=wall&ref=ts"><img width="41" float="center" height="40" border="0" title="Facebook" alt="Timesink" src="http://icons.mysitemyway.com/wp-content/gallery/green-jelly-icons-social-media-logos/099957-green-jelly-icon-social-media-logos-facebook-logo-square.png"></a>
+
-
 
+
-
<a href="http://twitter.com/mit_igem"><img width="41" height="40" border="0" title="Twitter" float="center" alt="Tweet Tweet" src="http://icons.mysitemyway.com/wp-content/gallery/green-jelly-icons-social-media-logos/100030-green-jelly-icon-social-media-logos-twitter.png"></a>
+
-
 
+
-
<a href="mailto:igem2010.mit@gmail.com?subject=Questions about MIT iGEM 2010"><img width="41" float="right" height="40" border="0" title="Email" alt="igem2010.mit@gmail.com" src="http://icons.mysitemyway.com/wp-content/gallery/green-jelly-icons-social-media-logos/099982-green-jelly-icon-social-media-logos-mail.png"></a>
+
-
 
+
-
</div>
+
-
 
+
-
 
+
-
</body>                                                                
+
</html>
</html>

Revision as of 23:17, 24 October 2010

abstract

Materials technology is a rapidly advancing field with research focusing on new methods of nanomaterial design. The biggest problem with nanomaterials is that the creators (us) are on a completely different length scale when compared to the materials we venture to create. Our project strives to take small steps in the direction of nanomaterials by utilizing cells--both bacterial and mammalian--and phages as units in developing a self-assembling, dynamic biomaterial.

Our goal is to create a system within cells that can convert a 2D design visible to the human eye into a 3D biostructure of phage or bone with the cross section of that same design. Our cells will be able to sense elements of the macro, human world, and output a living, self-assembled structure. Our mammalian team was motivated by the idea of the cellular “touch pad,” and is utilizing mechano-sensing promoters to allow mammalian cells to sense pressure and produce a controlled mineralization in response. The bacterial team is using the S.O.S. response from UV radiation and quorum sensing as stimuli to have bacteria secrete bacteriophage. Coated with zipper proteins, these bacteriophage can polymerize, cross-link and eventually form a living structure. Both teams are integrating a toggle switch into the system, allowing us to consistently control the cell’s response to the stimuli.

By the end of the summer, we want our project to be able to showcase the capability of indirectly controlling the production of an organized biostructure. With the integration of multiple visible markers, user-directed design will be able to stimulate the production of a multichromatic output on a bacterial lawn, along with a tangible biostructure, and mechanical stimulation of our mammalian cell line will induce controlled differentiation of our cells into bone. We hope to have developed two systems with the ability to form living three-dimensional biomaterials that retain their ability to reform into a different structure if given the correct input.