Team:ULB-Brussels/Introduction

From 2010.igem.org

Revision as of 21:03, 27 October 2010 by Maxiiiime (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

    Hydrogen Production

Introduction

In this ever more energy-dependent world, where fossil fuel resources become scarce and raise environmental issues, the search for green energy sources is a growing concern in both civil and scientific communities. In this context, hydrogen turns out to be an interesting alternative. Indeed, hydrogen fuel cells do not affect the carbon footprint since their only side effect is a production of water.  Although the hydrogen is the most abundant element on the planet, it is quite difficult to produce. Current hydrogen production relies mostly on chemical processes, such as petroleum cracking or water electrolysis, which require a lot of energy.
In order to develop greener and more energy-efficient processes, the use of micro-organisms as biocatalysts for hydrogen production has been studied for many years. A major concern for this approach is the use of dark fermentation, which attains very low yields, compared to other fermentative biofuel synthesis, e.g. methane or ethanol. However, while no industrial application has yet been achieved, scientific and technological advances allow further developments and opportunities in this field.
We propose to design a genetically engineered E. coli, Hydrocoli, with an improved natural hydrogen production pathway, using the organic compounds found in wastewaters as substrate. In addition, we planned to implement various features to enable Hydrocoli to perform other tasks related to wastewater treatment, such as signaling metallic contamination, eliminating nitrogen compounds, or hindering hydrogen consumption by methanogenic bacteria.  We also plan to set up a programmed death module in order to prevent Hydrocoli proliferation outside the wastewater treatment plant.
This approach may result into a reduction of sludge which otherwise would need to be treated. Besides that, the use of genetically modified organism in wastewater treatment has never been achieved and could potentially increase the efficiency of the process. It could also show people that genetically modified organisms are tools able to improve our environment that should be considered.
The ethical and economical issues of our project and of synthetic biology in general will also be discussed.
In order to tackle this ambitious project in a relatively short time, we have decided to divide our approach in several modules:

  • Hydrogen production
  • Homologous recombination
  • Bacteria programmed death module
  • Detection of metal contamination

For each module, we developed to a computerized model in order to analyze the kinetics of reactions prior to the experiments.
Hydrogen production:
The main goal here is to direct the carbon flux through specific pathways, namely the mixed acid fermentation since this pathway leads to hydrogen production. In order to limit the flow through unwanted reactions, we plan to eliminate the enzyme catalyzing key reactions by deleting the corresponding genes. These genes are ldhA, ppc and focA.
E. coli also contains 2 hydrogenases, Hyab and Hybc, which might use the newly produced hydrogen. These two enzymes must obviously be inactivated.
We also plan to over-express several genes that are involved in enhancing the mixed acid fermentation: FNR, which is a global regulator of anaerobic growth, TdcE and PflB (code for two pyruvate formate lyases which catalyze the transformation of pyruvate into formate).
Homologous recombination:
In order to increase the production rate of hydrogen in our Hydrocoli, we plan to delete several genes. We plan to construct these deletions using a method based on the λ phage Red system developed by Datsenko and Wanner (2000).
We plan to develop homologous recombination tools that will be useful to the iGEM community The homologous recombination module focuses on the development of tools that would enable the deletion of any gene on known sequence, using the method mentioned above.
Quorum addiction module:
To avoid escape of Hydrocoli outside the wastewater treatment plant (or wherever they are confined), we plan to implement a system of quorum addiction. The system is composed of a toxin gene, parE, and its cognate antitoxin, parD.   Expression of these genes is under the control of quorum sensing-dependent promoters.  In high population density conditions (i.e. in the wastewater treatment plant), Hydrocoli is alive due to the ParD antitoxin production.  If Hydrocoli escapes, the population density will drastically drop.  These conditions favor the toxin expression and therefore, Hydrocoli will die. 

    Hydrogen Production