Team:Tsinghua/project/outline

From 2010.igem.org

(Difference between revisions)
(Helper Plasmid(HP) Insertion)
(Comparison between natural antibody production and E. Coli system)
 
(182 intermediate revisions not shown)
Line 8: Line 8:
<html>
<html>
<script>
<script>
-
navlist=new Array("Background", "Project Outline", "Module I", "Module II", "Future");
+
navlist=new Array("Background", "Project Outline", "Module I", "Module II", "Conclusion", "Future");
-
linkl = new Array("/Team:Tsinghua/project", "#outline", "#mod1", "#mod2", "future");
+
linkl = new Array("/Team:Tsinghua/project", "#outline", "/Team:Tsinghua/project/outline/m1", "/Team:Tsinghua/project/outline/m2", "con", "future");
subs = new Array(2,3);
subs = new Array(2,3);
writenav(navlist, linkl, 1, subs);
writenav(navlist, linkl, 1, subs);
Line 15: Line 15:
<div id="main_content"><a name="outline"></a>
<div id="main_content"><a name="outline"></a>
<h1>Outline</h1>
<h1>Outline</h1>
-
<a name="mod1"></a></html>
 
 +
<div class="content_block">
 +
<br/>
 +
In order to realize the production of antibodies in prokaryotic cells, we firstly investigate the whole process of antibody production in mammalian immune system and try to simulate the whole process via the methods and concepts of synthetic biology. Finally, we successfully constructed the desired system. The comparison between the key steps involved in antibody generation and corresponding synthetic methods are shown in the chart below.
 +
<br/>
-
==Module I==
+
<table border="2" bordercolor="maroon" bgcolor="silver">
-
[[Image:TSModule1.PNG|500px]]
+
<tbody>
 +
<tr>
 +
<th colspan=3>Antibody Production</th>
 +
<th width=50px></th>
 +
<th colspan=2>E Coli. Production System</th></tr>
 +
<tr>
 +
  <td rowspan=4 width=70px><a href="#VDJ_Recombination_vs_Lading_Pad_Recombination">VDJ Recombination</a></td>
 +
  <td rowspan=3 width=70px>Preparation</td>
 +
  <td width=70px>RSS Sequence</td>
 +
  <td><img src="https://static.igem.org/mediawiki/2010/6/69/THUarrow1.png" width=50 /></td>
 +
  <td width=70px><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#Landing_Pad_Construction_and_Insertion">Landing Pad Insertion</a></td>
 +
  <td rowspan=4 width=70px><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1">Module I: Recombination System</a></td>
 +
</tr>
 +
<tr>
 +
  <td>VDJ Recombinase</td>
 +
  <td><img src="https://static.igem.org/mediawiki/2010/6/69/THUarrow1.png" width=50 /></td>
 +
  <td><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#hpi">Helper Plasmid Insertion</a></td>
 +
</tr>
 +
<tr>
 +
  <td>VDJ Library</td>
 +
  <td><img src="https://static.igem.org/mediawiki/2010/6/69/THUarrow1.png" width=50 /></td>
 +
  <td><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#dpc">Donor Plasmid Construction</a></td>
 +
</tr>
 +
<tr>
 +
  <td>Recombination</td>
 +
  <td colspan=2><img src="https://static.igem.org/mediawiki/2010/d/d6/THUarrow2.png" width=180></td>
 +
  <td><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#dpiri">DP Insertion and Recombination Induction</a></td>
 +
</tr>
 +
<tr>
 +
  <td rowspan=2><a href="#Somatic_hyper-mutation_vs_Junctional_mutation">Somatic Hypermutation</a></td>
 +
  <td rowspan=2 colspan=3><img src="https://static.igem.org/mediawiki/2010/4/48/THUarrow.png" width=325 ></td>
 +
  <!---------<td>Junctional Diversity</td>---------------------->
 +
</tr>
 +
<tr>
 +
  <td rowspan=2><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2#m2s1">CBD-based Microarray</a></td>
 +
  <td rowspan=4><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2">Module II: Selection System</a></td>
 +
</tr>
 +
<tr>
 +
  <td rowspan=3><a href="#Antigen-specific_Selection_vs_CBD-Based_Microarray_and_ToxR-Based_Transmembrane_pathway_method">Antigen Selection</a></td>
 +
  <td rowspan=3 colspan=3><img src="https://static.igem.org/mediawiki/2010/4/48/THUarrow.png" width=325 ></td>
 +
</tr>
 +
<tr>
 +
  <td><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2#m2s2">ToxR-based Transmembrane Pathway</a></td>
 +
</tr>
 +
<tr>
 +
  <td><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2#Strategy_3">Cooperation With Macquarie_Australia</a></td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
</html>
 +
<br/>
 +
Generally speaking, antibody production in our project can be divided into two modules.
-
===Abstract===
+
<html>
 +
<body bgcolor="#336699" text="#ffffff" link="#60a179">
 +
<br/>
 +
<span class="rightfloat"><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1"><font face="Comic Sans MS" size="4">Module I: Generation of antibody library</font><img src="https://static.igem.org/mediawiki/2010/3/3c/Right_Arrow.png" width="30px"></a></span>
 +
<br/><br/>
 +
<span class="rightfloat"><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2"><font face="Comic Sans MS" size="4">Module II: Selection of specific antibodies</font><img src="https://static.igem.org/mediawiki/2010/3/3c/Right_Arrow.png" width="30px"></a></span>
 +
<br/><br/>
 +
</html>
-
===Flow chart===
+
==Project Design==
-
===Landing Pad Insertion===
+
===Module 1===
-
<br>
+
-
'''Purpose of this step'''
+
'''Antibodies Library Diversity & Randomicity'''
 +
[[Image:TSModule1.PNG|650px]]
-
Landing pad insertion is the first step of our two-step recombination system.
 
-
We insert a “landing pad” fragment which includes a promoter (placIQ1) and a tetracycline resistance gene (tetA) flanked by I-SceI recognition sites and 20-bp landing pad regions (LP1 and LP2) into Escherichia coli chromosome via att recombination. Then the helper plasmids encoding I-SceI endonuclease and λ-Red and donor plasmid encoding various antibiotic genes flanked by I-SceI recognition sites and same landing pad regions (LP1 and LP2) are transformed, which will be introduced in detail in next part. I-SceI expression is induced via the addition of L-arabinose. I-SceI recognition sites in the donor plasmid and chromosome are cleaved. Integration of the fragment in donor plasmid is facilitated by IPTG-induced λ-Red expression.
+
The first module is carried out by a novel method called E coli in vivo recombination system. The theoretical and experimental basis comes from the work of Thomas E. Kuhlman and Edward C. Cox. We managed to modify their system, wishing to utilize it for simulation of antibody recombination.
-
This two-step recombination method allows for the insertion of very large fragments into a specific location in Escherichia coli chromosome and in any orientation.  
+
Firstly, we try to insert a DNA segment called”Landing Pad(LP)” into the specific sites of E coli via Att recombination, the manner in which lambda phage integrates its DNA into E Coli genome. Landing pad sequence consists of the following parts(from 5’ to 3’ in the sequence):
-
'''Construction of landing pad'''
+
1)25bp-long random sequence
-
Landing pad consists of the following parts: a promoter (placIQ1), two landing pad regions, two I-SceI recognition sites and a tetracycline resistance gene (tetA).
+
2)15bp-long recognition sequence of restriction enzyme I-scel
-
First we obtain two target DNAs – promoter and tetA with PCR. Then We use the overlap extension polymerase chain reaction (or OE-PCR) to link two fragments together. Primer 2 and primer 3 have homologous sequences, so one segment can anneal to the other in certain conditions, in other words, the two segments can overlap into one segment after extension. If necessary, operate PCR again with primer 1 and primer 4 to obtain more products.
+
3)  antibiotic resistance gene used for antibody selection
-
<br>
+
 +
4)  15bp-long recognition sequence of restriction enzyme I-scel(corresponding to 2)
-
'''ATT RECOMBINATION'''
+
5)  25bp-long random sequence (corresponding to 1)
-
Our approach is based on genome targeting systems that utilize plasmids carrying a conditional-replication origin and a phage attachment (attP) site (17). We refer to our plasmids as CRIM (conditionalreplication, integration, and modular) plasmids. CRIM plasmids can be integrated into or retrieved from their bacterial attachment (attB) site by supplying phage integrase (Int) without or with excisionase (Xis) in trans.
+
After integrating DNA segment of Landing pad into the genome of E coli, we completed the genetic engineering of the genome of E coli. All the five parts of landing pad are designed for subsequent recombination.  
-
We got a strain with plasmid pUK2 from LAB. Than we develop a E.coli strain contains the helper plasmid AH69. These two plasmids are shown below. In order to match other parts of our whole project, the modification that kan-exon should be replaced with tet-SDS was necessary. We got tet-SDS from another plasmid named pkts-cs. Then we use PCR to get the two fragments as PT (from pkts-cs) and V (from pUK2). We ligate PT and V after digestion and modification to form a new plasmid. This new plasmid was named as pUKIP and contains a promoter region, a tet-SDS region and phage attachment site (attP). As reported in the paper, there exist one bacterial attachment site (attB) of HK002 in TorT-TorS gene of the chromosomal DNAs of E.coli K12 strain. That is to say, the PT fragment will integrate into the cell genome after the plasmid was transferred in cells.
+
Besides, in order to achieve different recombination goals, we designed several landing pads of different sequences.
-
===Helper Plasmid(HP) Insertion===
 
-
'''CRIM plasmid integration'''
 
-
Cells carrying a CRIM helper plasmid were grown in 20 ml of LB cultures with ampicillin at 30°C to an optical density of 600 nm of ca. 0.6 and then made electrocompetent. Following electroporation, cells were suspended in LB without ampicillin, incubated at 30°C for 30 min, at 42°C for 30 min and at 30°C for 30 min, and then spread onto selective agar (tet) and incubated at 37°C. Colonies were purified once nonselectively and then tested for antibiotic resistance for stable integration and loss of the helper plasmid and by PCR for copy number.
+
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#Landing_Pad_Construction_and_Insertion"><font face="Comic Sans MS" size=3>'Landing Pad Construction and Insertion'</font></a></html> to learn about the details of Landing Pad design.  
-
'''CRIM plasmid excision'''
 
-
Cells were transformed with the respective Xis/Int CRIM helper plasmid and then spread on ampicillin agar media at 30°C. Colonies were purified once or twice nonselectively on plates that were incubated for 1 h at 42°C and overnight at 37°C. They were then tested for antibiotic sensitivities and by PCR for loss of the integrated plasmid.
+
PLEASE refer to this <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#att"><font face="Comic Sans MS" size=3>'link'</font></a></html> to learn more about ATT recombination.
-
</br>
+
-
===Donor Plasmid(DP) Construction===
 
-
'''Purpose of this step:'''
 
-
After inserting landing pad and helper plasmid to E.coli, we must construct a series of donor plasmids to demonstrate that this system can truly realize the recombinant process in E.coli, thus we can further use this module to simulate the recombination of antibody gene in mammalian B cells. We not only need to test the efficiency of recombination, but also ensure that genes we get from this recombinant process can be expressed correctly and have their original function. So we intend to construct three plasmids to test the system.
+
After the integration of landing pad, we have to insert another DNA fragment called Helper Plasmid(HP), which provides necessary tools for in vivo recombination.  
-
====Strategy 1====
+
In this plasmid(Helper Plasmid), there are two genes used for recombination.
-
====Strategy 2====
+
The first one encodes restriction enzyme I-scel after induction of L-arabinose. I-scel is able to recognize the 15bp-length sequence flanking a target DNA fragment and cut out the fragment, therefore providing DNA segments for recombination mediated by other components.
-
===Donor Plasmid(DP) Insertion & Recombination Induction===
+
The second one encodes the enzyme responsible for recombination called Lamda-Red. With the presence of IPTG, Lamda-Red will recombine DNA fragments flanked by the same DNA sequence recognized by Lamda-Red.
-
===Removal of Helper Plasmid(HP)===
+
In addition, Helper Plasmid contains a specific temperature-sensitive replicon, which is used to control the replication via temperature changes. We can remove the replicon when necessary.
-
<html><a name="mod2"></a></html>
 
-
==Module II==
+
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#hpi"><font face="Comic Sans MS" size=3>'HP insertion'</font></a></html> to learn more about Helper Plasmid.
-
===Strategy 1===
 
 +
Up till now, we successfully engineered a ‘recepient strain’. Then we have to transform the ‘recepient strain’ with the Donor Plasmid(DP) containing recombination fragments. Donor Plasmid contains several Insertion Fragments and each Insertion Fragment contains following five parts:
-
[[Image:TSModule2m.PNG|500px]]
+
1) one 15bp-long restriction enzyme I-scel recognition site
-
===Strategy 2===
+
2) one 25bp-long random sequence
-
[[Image:TSModule2s.PNG|500px]]
+
 +
3) one fragment for insertion and recombination
-
===Strategy 3===
+
4) one 25bp-long random sequence
-
Cooperation with <html><a href="https://2010.igem.org/Team:Macquarie_Australia" target=blank>Macquarie Australia</a>
+
-
</div></div></body>
+
5) one 15bp-long restriction enzyme I-scel recognition site(in correspondence with 1)
-
</html>
+
 
 +
(Note: the order of the five parts differ from that of landing pad)
 +
 
 +
As we previously mentioned, Donor plasmid contains several Insertion Fragments. Based on the flanking landing pad sequence, we can ascribe Insertion Fragments to the same group as long as the flanking landing pad sequences of those Insertion Fragments are the same.
 +
 
 +
In order to achieve different goals, we design different Donor Plasmids, different Donor Plasmids contain different number of Insertion Fragments, which belong to different groups.
 +
 
 +
 
 +
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#dpc"><font face="Comic Sans MS" size=3>‘DP construction’</font></a></html> to learn about the details of Donor Plasmid and Insertion Fragments and the strategies employed in our design.
 +
 
 +
 
 +
As we all know, antibody diversity mainly lean on the number of the fragments used for recombination. Therefore, in order to mimic the antibody generation process, we need to construct Donor Plasmid which contains large sum of Insertion Fragments. Theoretically, we can construct Donor Plasmid of this kind. However, due to the time limit of the competition, we didn’t try to construct DP containing many Insertion Fragments.
 +
 
 +
In spite of this, in order to meet the needs, we designed two methods to construct plasmids on a large scale and attempted the usage in parts of our Donor Plasmids.
 +
 
 +
 
 +
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#Strategies"><font face="Comic Sans MS" size=3>'DP construction and Strategies'</font></a></html> for the methods of rapid plasmid construction.
 +
 
 +
 
 +
Besides, we have applied for two BBFRFC, which are BBFRFC61 and BBFRFC 62 respectively.
 +
 
 +
Then, after transformation of the prepared ‘recepient strain’ with Donor Plasmid and the induction of corresponding agents, I-scel enzyme cuts out DNA fragments from DP and LP, generating numerous Insertion Fragments. Besides, antibiotic resistance gene integrated into E coli genome is also cut out, providing recombination sites for Insertion Fragments.
 +
 
 +
Provided with Insertion Fragments mentioned above and Lamda-Red expressed by Donor Plasmid, Insertion Fragments recombine with the corresponding landing pad sequence in the genome and thus get inserted into the correct site of the genome. Based on our design of Landing pad, we can ensure that only one Insertion Fragment from one group is randomly inserted into the genome, therefore mimicking the VDJ recombination process.
 +
 
 +
 
 +
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m1#dpiri"><font face="Comic Sans MS" size=3>‘DP Insertion and Recombination Induction’</font></a></html> to learn more about this part.
 +
 
 +
 
 +
Engineered E coli cells which have undergone successful recombination can be selected out of the pool through specific screening methods. After tests on different strains, our project achieve a recombination rate above 50% based on our current techniques.
 +
 
 +
 
 +
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/experiments#res"><font face="Comic Sans MS" size=3>‘Result’</font></a></html> to learn more about the identification of recombination rate.
 +
 
 +
<br/><br/>
 +
 
 +
===Module 2===
 +
 
 +
The goal of the second module in our project is aimed at selection of specific antibodies. Due to the maturity of existing antibody screening technique, our work mainly focuses on imitation of mammalian antibody selection, thus providing possible alternatives for existing methods.
 +
 
 +
The outline of our ideas is to find mechanisms similar to in vivo antibody selection and take in,to account the industry production costs, controllability and reliability, thus developing new methods for antibody selection.
 +
In fact, in mammalian system, antibody selection is achieved through the activation of B lymphocytes and thus the rapid proliferation of the B lymphocytes that express the specific antibodies that bind to antigen. Simply put, the whole process relies on the interaction between antigen epitopes and membrane integral immunoglobins.
 +
 
 +
To mimic the activation mediated by membrane integral immunoglobins, we develop ToxR-mediated transmembrane activation signal system. In this system, the interaction between antibodies and antigen triggered downstream expression of reporter genes, thus providing signals for selection.
 +
 
 +
 
 +
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2#m2s2"><font face="Comic Sans MS" size=3>‘ToxR-based Transmembrane Signaling Pathway Method’</font></a></html> for detailed description of this method.
 +
 
 +
 
 +
In addition, we develop a technique called ‘Bacterial based Microarray’ for selection purpose. In this method, we combine membrane display technique and high throughput microarray technique, that is, a bacterial based microarray method.
 +
 
 +
 
 +
PLEASE refer to <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2#m2s1"><font face="Comic Sans MS" size=3>’Bacterial based microarray’</font></a></html> for details.
 +
 
 +
 
 +
In order to find methods for antibody selection, we cooperate with other iGEM teams. For example, we talked with Macquarie_Australia iGEM team about the project. The techniques involved in their project might be useful for our selection methods. Therefore, members from both teams worked together to research on this problem.
 +
 
 +
 
 +
PLEASE refer to this <html><a href="https://2010.igem.org/Team:Tsinghua/project/outline/m2#Strategy_3"><font face="Comic Sans MS" size=3>'link'</font></a></html> to learn more about our cooperation.
 +
 
 +
 
 +
Antibody Coding Gene Recombination, also known as V(D)J recombination, somatic recombination, is a mechanism of genetic recombination in the early stages of immunoglobulin (Ig) and T cell receptors (TCR) production of the immune system. V(D)J recombination nearly-randomly combines Variable, Diverse, and Joining gene segments of vertebrates, and because of its randomness in choosing different genes, is able to diversely encode proteins to match antigens.
 +
Our system is aiming at imitating this recombination process, using E.coli as the gene carrier.
 +
It is known to all that regional genes (V, D, J) are flanked by Recombination Signal Sequences (RSSs), and the recombination occurs when VDJ recombinase are expressed. We choose RecA enzyme to induce the recombination, while use I-Sel enzyme to cut the genome, just mimicking the process happened in B cells.
 +
<br/>
 +
<br/>

Latest revision as of 17:16, 27 October 2010

Until Jamboree

days

hours

minutes

seconds

Follow us on


Visitor Locations

Join the conversation

Outline


In order to realize the production of antibodies in prokaryotic cells, we firstly investigate the whole process of antibody production in mammalian immune system and try to simulate the whole process via the methods and concepts of synthetic biology. Finally, we successfully constructed the desired system. The comparison between the key steps involved in antibody generation and corresponding synthetic methods are shown in the chart below.
Antibody Production E Coli. Production System
VDJ Recombination Preparation RSS Sequence Landing Pad Insertion Module I: Recombination System
VDJ Recombinase Helper Plasmid Insertion
VDJ Library Donor Plasmid Construction
Recombination DP Insertion and Recombination Induction
Somatic Hypermutation
CBD-based Microarray Module II: Selection System
Antigen Selection
ToxR-based Transmembrane Pathway
Cooperation With Macquarie_Australia

Generally speaking, antibody production in our project can be divided into two modules.


Module I: Generation of antibody library

Module II: Selection of specific antibodies

Project Design

Module 1

Antibodies Library Diversity & Randomicity TSModule1.PNG


The first module is carried out by a novel method called E coli in vivo recombination system. The theoretical and experimental basis comes from the work of Thomas E. Kuhlman and Edward C. Cox. We managed to modify their system, wishing to utilize it for simulation of antibody recombination.

Firstly, we try to insert a DNA segment called”Landing Pad(LP)” into the specific sites of E coli via Att recombination, the manner in which lambda phage integrates its DNA into E Coli genome. Landing pad sequence consists of the following parts(from 5’ to 3’ in the sequence):

1)25bp-long random sequence

2)15bp-long recognition sequence of restriction enzyme I-scel

3) antibiotic resistance gene used for antibody selection

4) 15bp-long recognition sequence of restriction enzyme I-scel(corresponding to 2)

5) 25bp-long random sequence (corresponding to 1)

After integrating DNA segment of Landing pad into the genome of E coli, we completed the genetic engineering of the genome of E coli. All the five parts of landing pad are designed for subsequent recombination.

Besides, in order to achieve different recombination goals, we designed several landing pads of different sequences.


PLEASE refer to 'Landing Pad Construction and Insertion' to learn about the details of Landing Pad design.


PLEASE refer to this 'link' to learn more about ATT recombination.


After the integration of landing pad, we have to insert another DNA fragment called Helper Plasmid(HP), which provides necessary tools for in vivo recombination.

In this plasmid(Helper Plasmid), there are two genes used for recombination.

The first one encodes restriction enzyme I-scel after induction of L-arabinose. I-scel is able to recognize the 15bp-length sequence flanking a target DNA fragment and cut out the fragment, therefore providing DNA segments for recombination mediated by other components.

The second one encodes the enzyme responsible for recombination called Lamda-Red. With the presence of IPTG, Lamda-Red will recombine DNA fragments flanked by the same DNA sequence recognized by Lamda-Red.

In addition, Helper Plasmid contains a specific temperature-sensitive replicon, which is used to control the replication via temperature changes. We can remove the replicon when necessary.


PLEASE refer to 'HP insertion' to learn more about Helper Plasmid.


Up till now, we successfully engineered a ‘recepient strain’. Then we have to transform the ‘recepient strain’ with the Donor Plasmid(DP) containing recombination fragments. Donor Plasmid contains several Insertion Fragments and each Insertion Fragment contains following five parts:

1) one 15bp-long restriction enzyme I-scel recognition site

2) one 25bp-long random sequence

3) one fragment for insertion and recombination

4) one 25bp-long random sequence

5) one 15bp-long restriction enzyme I-scel recognition site(in correspondence with 1)

(Note: the order of the five parts differ from that of landing pad)

As we previously mentioned, Donor plasmid contains several Insertion Fragments. Based on the flanking landing pad sequence, we can ascribe Insertion Fragments to the same group as long as the flanking landing pad sequences of those Insertion Fragments are the same.

In order to achieve different goals, we design different Donor Plasmids, different Donor Plasmids contain different number of Insertion Fragments, which belong to different groups.


PLEASE refer to ‘DP construction’ to learn about the details of Donor Plasmid and Insertion Fragments and the strategies employed in our design.


As we all know, antibody diversity mainly lean on the number of the fragments used for recombination. Therefore, in order to mimic the antibody generation process, we need to construct Donor Plasmid which contains large sum of Insertion Fragments. Theoretically, we can construct Donor Plasmid of this kind. However, due to the time limit of the competition, we didn’t try to construct DP containing many Insertion Fragments.

In spite of this, in order to meet the needs, we designed two methods to construct plasmids on a large scale and attempted the usage in parts of our Donor Plasmids.


PLEASE refer to 'DP construction and Strategies' for the methods of rapid plasmid construction.


Besides, we have applied for two BBFRFC, which are BBFRFC61 and BBFRFC 62 respectively.

Then, after transformation of the prepared ‘recepient strain’ with Donor Plasmid and the induction of corresponding agents, I-scel enzyme cuts out DNA fragments from DP and LP, generating numerous Insertion Fragments. Besides, antibiotic resistance gene integrated into E coli genome is also cut out, providing recombination sites for Insertion Fragments.

Provided with Insertion Fragments mentioned above and Lamda-Red expressed by Donor Plasmid, Insertion Fragments recombine with the corresponding landing pad sequence in the genome and thus get inserted into the correct site of the genome. Based on our design of Landing pad, we can ensure that only one Insertion Fragment from one group is randomly inserted into the genome, therefore mimicking the VDJ recombination process.


PLEASE refer to ‘DP Insertion and Recombination Induction’ to learn more about this part.


Engineered E coli cells which have undergone successful recombination can be selected out of the pool through specific screening methods. After tests on different strains, our project achieve a recombination rate above 50% based on our current techniques.


PLEASE refer to ‘Result’ to learn more about the identification of recombination rate.



Module 2

The goal of the second module in our project is aimed at selection of specific antibodies. Due to the maturity of existing antibody screening technique, our work mainly focuses on imitation of mammalian antibody selection, thus providing possible alternatives for existing methods.

The outline of our ideas is to find mechanisms similar to in vivo antibody selection and take in,to account the industry production costs, controllability and reliability, thus developing new methods for antibody selection. In fact, in mammalian system, antibody selection is achieved through the activation of B lymphocytes and thus the rapid proliferation of the B lymphocytes that express the specific antibodies that bind to antigen. Simply put, the whole process relies on the interaction between antigen epitopes and membrane integral immunoglobins.

To mimic the activation mediated by membrane integral immunoglobins, we develop ToxR-mediated transmembrane activation signal system. In this system, the interaction between antibodies and antigen triggered downstream expression of reporter genes, thus providing signals for selection.


PLEASE refer to ‘ToxR-based Transmembrane Signaling Pathway Method’ for detailed description of this method.


In addition, we develop a technique called ‘Bacterial based Microarray’ for selection purpose. In this method, we combine membrane display technique and high throughput microarray technique, that is, a bacterial based microarray method.


PLEASE refer to ’Bacterial based microarray’ for details.


In order to find methods for antibody selection, we cooperate with other iGEM teams. For example, we talked with Macquarie_Australia iGEM team about the project. The techniques involved in their project might be useful for our selection methods. Therefore, members from both teams worked together to research on this problem.


PLEASE refer to this 'link' to learn more about our cooperation.


Antibody Coding Gene Recombination, also known as V(D)J recombination, somatic recombination, is a mechanism of genetic recombination in the early stages of immunoglobulin (Ig) and T cell receptors (TCR) production of the immune system. V(D)J recombination nearly-randomly combines Variable, Diverse, and Joining gene segments of vertebrates, and because of its randomness in choosing different genes, is able to diversely encode proteins to match antigens. Our system is aiming at imitating this recombination process, using E.coli as the gene carrier. It is known to all that regional genes (V, D, J) are flanked by Recombination Signal Sequences (RSSs), and the recombination occurs when VDJ recombinase are expressed. We choose RecA enzyme to induce the recombination, while use I-Sel enzyme to cut the genome, just mimicking the process happened in B cells.