Team:Tsinghua

From 2010.igem.org

(Difference between revisions)
 
(63 intermediate revisions not shown)
Line 8: Line 8:
{{:Team:Tsinghua/leftbar}}
{{:Team:Tsinghua/leftbar}}
<html>
<html>
 +
<script>
 +
navl = new Array("Team", "Project", "Experiments", "Parts", "Support", "Human Practice");
 +
lk = new Array("#team", "#proj", "#exp", "#par", "#supp", "#hum");
 +
writenav(navl, lk);
 +
</script>
<div id="main_content">
<div id="main_content">
-
</html>
 
-
='''Tsinghua University'''=
+
<div class="wrapper">
-
==Available Languages==
+
<a name="team"></a>
-
[[Image:Usa.gif|middle|30px]] [[Team:Tsinghua#English|English]] 
+
<div class="leftblock">
-
[[Image:China.gif|middle|30px]] [[Team:Tsinghua#我们的项目|中文]]
+
<h1><IMG SRC="https://static.igem.org/mediawiki/2010/d/d8/TSSLogo.png" width="40px">Team</h1>
-
[[Image:Russia.gif|middle|30px]] [[Team:Tsinghua#О проекте|Русский]]
+
<div class="content_block">
-
[[Image:France.gif|middle|30px]] [[Team:Tsinghua#Notre Projet|Français]]
+
<div id="leftpic"><img src="https://static.igem.org/mediawiki/2010/4/49/Teampic.jpg" width=90px /></div>
-
[[Image:Germany.gif|middle|30px]] [[Team:Tsinghua#Unser Projekt|Deutsch]]
+
<p>We're from Tsinghua University.</p><p>Since China opened up to the world in 1978, Tsinghua University has developed at a breathtaking pace into a comprehensive research university. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University has now over 25,900 students, including 13,100 undergraduates and 12,800 graduate students. As one of China’s most renowned universities, Tsinghua has become an important institution for fostering talent and scientific research.</p><p>
-
[[Image:Spain.gif|middle|30px]] [[Team:Tsinghua#Nuestro Proyecto|Español]]
+
With the motto of “Self-Discipline and Social Commitment” and the spirit of “Actions Speak Louder than Words”, Tsinghua University is dedicated to the well-being of Chinese society and to world development.</p>
-
[[Image:Japan.gif|middle|30px]] [[Team:Tsinghua#私たちのプロジェクト|日本語]]
+
<p><span style="float:right"><a href="/Team:Tsinghua/team" >More...</a></span></p>
 +
</div>
 +
</div>
 +
<div class="rightblock">
 +
<a name="proj"></a>
 +
<h1><IMG SRC="https://static.igem.org/mediawiki/2010/d/d8/TSSLogo.png" width="40px" />Project</h1>
 +
<div class="content_block">
 +
<div id="leftpic"><img src="https://static.igem.org/mediawiki/2010/5/5e/TSModule2m.PNG" width=90px/></div><p>
 +
Monoclonal antibodies (mAb or moAb) are monospecific antibodies that are the same, made by identical immune cells that are all clones of a unique parent cell. When stimulated by almost any type of antigen, the immune system can create the specific antibody. This lays the foundation for monoclonal artificial antibodies.</p><p>
 +
The current most well-developed technique in Artificial Monoclonal Antibody is the famous Hybridoma Cell Production. Monoclonal antibodies are typically made by fusing myeloma cells with the spleen cells from a mouse that has been immunized with the desired antigen. The success rate is so low that a selective medium in which only fused cells can grow is used. This mixture of cells is then diluted and clones are grown from single parent cells on microtitre wells. The antibodies secreted by the different clones are then assayed for their ability to bind to the antigen. The most productive and stable clone is then selected for future use.</p>
 +
<p><span style="float:right"><a href="/Team:Tsinghua/project" >More...</a></span></p>
 +
</div>
 +
</div></div>
 +
<div class="wrapper">
 +
<div class="leftblock">
 +
<a name="par"></a>
 +
<h1><IMG SRC="https://static.igem.org/mediawiki/2010/d/d8/TSSLogo.png" width=40px">Parts</h1>
 +
<div class="content_block">
 +
<div id="leftpic"><img src="http://biobricks.org/img/750px-BBFoundation_shadow.png" width=90px /></div><p>We built a host of parts during our project. The idea is that after every small step, we store our sequence as a biobrick part.</p><p> This strategy marks our progress and facilitates future use of these sequences.</p>
 +
<p><span style="float:right"><a href="/Team:Tsinghua/parts" >More...</a></span></p>
 +
</div></div>
-
=='''Our Project'''==
+
<div class="rightblock">
-
[[Image:Usa.gif|15px]]English  [[Team:Tsinghua#Tsinghua University|Back]]
+
<a name="exp"></a>
 +
<h1><IMG SRC="https://static.igem.org/mediawiki/2010/d/d8/TSSLogo.png" width="40px" />Experiment</h1>
 +
<div class="content_block">
 +
<div id="leftpic"><img src="http://www.htys.org/images/logo1.jpg" width=90px /></div><p>
 +
Our experiments are carefully recorded on a daily basis. Through the series of records, we can see our joys and sorrows.</p><p>Besides, we made the records for the purpose that our experiments can be repeated one day by someone else, thus contributing to the exploration of the unknown.</p>
 +
<p><span style="float:right"><a href="/Team:Tsinghua/experiments" >More...</a></span></p>
 +
</div></div>
 +
</div>
-
Antibody is a kind of magic substance.
+
<div class="wrapper">
 +
<div class="leftblock">
 +
<a name="supp"></a>
 +
<h1><IMG SRC="https://static.igem.org/mediawiki/2010/d/d8/TSSLogo.png" width="40px">Support</h1>
 +
<div class="content_block">
 +
<div id="leftpic"><img src="https://static.igem.org/mediawiki/2010/9/9c/Humanpic.JPG" width=90px /></div><p>Our project is supported by School of Life Sciences, Department of Physics, Academy of Arts and Designs in Tsinghua.</p><P>
 +
Besides, we cited from a series of references.</p>
 +
<p><span style="float:right"><a href="/Team:Tsinghua/support" >More...</a></span></p>
 +
</div></div>
-
There are two aspects in the research study which concerns about antibody:
+
<div class="rightblock">
 +
<a name="hum"></a>
 +
<h1><IMG SRC="https://static.igem.org/mediawiki/2010/d/d8/TSSLogo.png" width="40px">Human Practice</h1>
 +
<div class="content_block">
 +
<div id="leftpic"><img src="https://static.igem.org/mediawiki/2010/f/fd/Humanity.jpg" width=90px /></div><p>We put safety as our first priority and made a detailed safety brochure. </p>
 +
<p>We also devoted efforts to publicize synthetic biology and to cooperate with other teams. The teams in China held a summer meetup to discuss our progress and share our resources. We also held a lecture introducing iGEM and our project in Tsinghua Univeristy. To get further support, we sought the cooperation of iGEM Team at Macquire, Australia.</p>
 +
<p><span style="float:right"><a href="/Team:Tsinghua/HumanPractice" >More...</a></span></p>
 +
</div></div>
-
The first one is studying the antibody producing mechanism in mammals in the realm of natural science. The core is to introduce numerous antibodies based on limited gene fragment in ideal condition. Consequently, in certain situation, creatures produce plenty of proper antibodies for the purpose of adapting to the environment.
+
</div></div>
-
 
+
-
The other is focused on the technology of antibody producing in engineering. The main problem is to develop a cheap and effective method to manufacture various high specific antibodies. In substance, these two aspects are combined to each other.
+
-
 
+
-
Inspired by the concept of synthetic biology, Tsinghua iGEM 2010 project is focused on developing an '''Artificial Antibody Generation System''' within prokaryotic cells to provide a new way for solving the problems about antibody generation. Thanks to the simple and easy-to-be-industrialized characters of prokaryotic system, such an antibody generation system, once established, will facilitate the cheap and efficient production of antibody.
+
-
 
+
-
Production of antibody in mammalian immune system involves two steps:
+
-
 
+
-
-Produce of large numbers of antibodies randomly
+
-
 
+
-
-Select for the specific ones according to the antigen.
+
-
 
+
-
Therefore, our Antibody Generation System would be also composed of two devices:
+
-
 
+
-
 
+
-
Module I: Construction of antibody pool
+
-
 
+
-
Employing an effective in-vivo recombination method, we try to simulate the process of recombination and production of antibody within B cell during the reproduction of E.coli itself, thus establishing the antibody pool within single bacteria strain.
+
-
 
+
-
 
+
-
Module II: Selection of specific antibody
+
-
 
+
-
In the selection of antibody, our immune system evolves a smart way to pick out the antibody it needs. However, we need simple way to industrialize the  selection of antibody independent of eukaryotic system. Our antibody generation system will try to combine the advantage of both mammal immune system and prokaryotic reproduction system. To achieve such goal, we design the following ways:
+
-
 
+
-
1. Use the combination of protein on the E.coli membrane to simulate the recognition between antigen and antibody, and use the signaling mechanism within the prokaryotic cells to transfer correct recognition into downstream signal like activating LacZ promoter.
+
-
 
+
-
2. Use the extracellular presenting system of the Prokaryotes to change the antibodies screening to the simple "Filter" screening.
+
-
 
+
-
3. Use the interaction and combination system of the Prokaryotes to change the antibodies screening to the simple antibiotic resistence screening.
+
-
 
+
-
 
+
-
<html>See Details @ <a href="https://2010.igem.org/Team:Tsinghua/project" style="text-decoration: none">Project</a></html>
+
-
 
+
-
=='''我们的项目'''==
+
-
[[Image:China.gif|15px]]中文版[[Team:Tsinghua#Tsinghua University|Back]]
+
-
 
+
-
抗体是一类神奇的物质。
+
-
 
+
-
与抗体有关的科学问题主要分为两个方向:
+
-
 
+
-
一是在自然科学领域,研究哺乳动物体内抗体的产生机制及其作用机理,其核心问题是,免疫系统如何利用有限的基因片段产生理论上无限多种抗体,并在特定情况下大量产生适当抗体,从而应对不断变化的外界环境。
+
-
 
+
-
二是在工程学领域,研究抗体生产技术,其核心问题是:能否发展一套迅速、便宜生产各种高特异性抗体的系统。
+
-
 
+
-
而本质上,这两个方向却是统一的。
+
-
 
+
-
根据合成生物学的思想,清华大学iGEM10项目希望以原核生物为基础,构建一个完全模拟免疫系统'''抗体生成过程的人造系统''',通过该系统,研究抗体形成的有关问题;而由于原核生物本身的特点,这个系统同时具有了抗体工业化生产所必需的高效、便宜的特性。实现了科学与工程的完美统一!
+
-
 
+
-
免疫系统的抗体生成过程包括两个步骤:
+
-
 
+
-
-随机产生大量多样的抗体
+
-
 
+
-
-对某种特定抗体进行筛选
+
-
 
+
-
 
+
-
因此,我们的系统由两部分组成:
+
-
 
+
-
 
+
-
====模块 I: 抗体库的构建====
+
-
 
+
-
使用一种高效的大肠杆菌体内重组(in-vivo recombination)方法,使细菌在增殖过程中的重组来模拟免疫B细胞发育过程中复杂的重组过程,从而达到使用单一菌株简单构建抗体库的目的。
+
-
同时,利用数学建模工具在理论上印证此系统能产生的抗体数目,可达到与免疫系统相当的数量级。
+
-
 
+
-
====模块 II: 特异性抗体的筛选====
+
-
 
+
-
在抗体筛选中,免疫系统所使用的方法显然要简单、高效的多。而脱离开复杂生物系统的工业生产中的筛选方法,则更易于操作。在我们的系统中,这两个筛选策略的优势得以结合。几种基于不同思路的方法被开发出来,以实现这些目的。目前主要包括:
+
-
 
+
-
1、 应用原核生物跨膜信号系统模拟免疫系统膜联抗体与抗原结合后所启动的应答机制,从而将抗体筛选转化成下游简单的营养型筛选。
+
-
 
+
-
2、应用原核生物胞外呈递系统将抗体筛选转化成简单的“过滤”筛选。
+
-
 
+
-
3、应用原核生物结合系统将抗体筛选转化成抗性筛选。
+
-
 
+
-
 
+
-
<html>See Details @ <a href="https://2010.igem.org/Team:Tsinghua/project" style="text-decoration: none">Project</a></html>
+
-
 
+
-
=='''О проекте'''==
+
-
[[Image:Russia.gif|15px]]Русский[[Team:Tsinghua#Tsinghua University|Back]]
+
-
 
+
-
 
+
-
Tsinghua iGEM 2010 Project is focused on developing a new Antibody Production Method using Synthetic Biology.
+
-
The Aim is to
+
-
''' Simulate Antibody Selection and Production Technology with Bacteria'''.
+
-
 
+
-
Traditional method of antibody production such as Hybridoma Technology is expensive and time consuming. In Hybridoma Technology, generation of B-Cell library is accomplished inside experimental animal, mouse for example; using Flow Cytometry to select a specific kind of antibody; then hybridoma would be prepared to harvest antibody.
+
-
 
+
-
In this project, we expect to achieve all these processes cheap and efficiently in E.coli Cell. The whole project can be divided into two modules:
+
-
 
+
-
 
+
-
====MODULE I: Generation of Antibody Library====
+
-
 
+
-
====MODULE II: Selection of Specific Antibody====
+
-
 
+
-
<html>See Details @ <a href="https://2010.igem.org/Team:Tsinghua/project" style="text-decoration: none">Project</a></html>
+
-
=='''Notre Projet'''==
+
-
[[Image:France.gif|15px]]Français[[Team:Tsinghua#Tsinghua University|Back]]
+
-
 
+
-
Tsinghua iGEM 2010 Project is focused on developing a new Antibody Production Method using Synthetic Biology.
+
-
The Aim is to
+
-
''' Simulate Antibody Selection and Production Technology with Bacteria'''.
+
-
 
+
-
Traditional method of antibody production such as Hybridoma Technology is expensive and time consuming. In Hybridoma Technology, generation of B-Cell library is accomplished inside experimental animal, mouse for example; using Flow Cytometry to select a specific kind of antibody; then hybridoma would be prepared to harvest antibody.
+
-
 
+
-
In this project, we expect to achieve all these processes cheap and efficiently in E.coli Cell. The whole project can be divided into two modules:
+
-
 
+
-
 
+
-
====MODULE I: Generation of Antibody Library====
+
-
 
+
-
====MODULE II: Selection of Specific Antibody====
+
-
 
+
-
<html>See Details @ <a href="https://2010.igem.org/Team:Tsinghua/project" style="text-decoration: none">Project</a></html>
+
-
 
+
-
=='''Unser Projekt'''==
+
-
[[Image:Germany.gif|15px]]Deutsch[[Team:Tsinghua#Tsinghua University|Back]]
+
-
 
+
-
Tsinghua iGEM 2010 Project is focused on developing a new Antibody Production Method using Synthetic Biology.
+
-
The Aim is to
+
-
''' Simulate Antibody Selection and Production Technology with Bacteria'''.
+
-
 
+
-
Traditional method of antibody production such as Hybridoma Technology is expensive and time consuming. In Hybridoma Technology, generation of B-Cell library is accomplished inside experimental animal, mouse for example; using Flow Cytometry to select a specific kind of antibody; then hybridoma would be prepared to harvest antibody.
+
-
 
+
-
In this project, we expect to achieve all these processes cheap and efficiently in E.coli Cell. The whole project can be divided into two modules:
+
-
 
+
-
 
+
-
====MODULE I: Generation of Antibody Library====
+
-
 
+
-
====MODULE II: Selection of Specific Antibody====
+
-
 
+
-
<html>See Details @ <a href="https://2010.igem.org/Team:Tsinghua/project" style="text-decoration: none">Project</a></html>
+
-
 
+
-
=='''Nuestro Proyecto'''==
+
-
[[Image:Spain.gif|15px]]Español  [[Team:Tsinghua#Tsinghua University|Back]]
+
-
 
+
-
Tsinghua iGEM 2010 Project is focused on developing a new Antibody Production Method using Synthetic Biology.
+
-
The Aim is to
+
-
''' Simulate Antibody Selection and Production Technology with Bacteria'''.
+
-
 
+
-
Traditional method of antibody production such as Hybridoma Technology is expensive and time consuming. In Hybridoma Technology, generation of B-Cell library is accomplished inside experimental animal, mouse for example; using Flow Cytometry to select a specific kind of antibody; then hybridoma would be prepared to harvest antibody.
+
-
 
+
-
In this project, we expect to achieve all these processes cheap and efficiently in E.coli Cell. The whole project can be divided into two modules:
+
-
 
+
-
 
+
-
====MODULE I: Generation of Antibody Library====
+
-
 
+
-
====MODULE II: Selection of Specific Antibody====
+
-
 
+
-
 
+
-
=='''私たちのプロジェクト'''==
+
-
[[Image:Japan.gif|15px]]日本語  [[Team:Tsinghua#Tsinghua University|Back]]
+
-
 
+
-
清華せいさつ2010プロジェクトは、新しい抗体の生産方法は、合成生物学を使用して開発に焦点を当てています。
+
-
目的には
+
-
'''をシミュレート抗体の選択と生産技術細菌です'''。
+
-
 
+
-
ハイブリドーマ技術などの抗体産生の伝統的な方法は、コストと時間がかかります。ハイブリドーマ技術では、B細胞ライブラリの生成は実験動物内で、たとえばマウスが、抗体の特定の種類を選択するフローサイトメトリーを使用して、次にハイブリドーマは、収穫抗体を準備される実行されます。
+
-
 
+
-
このプロジェクトでは、我々は安く、大腸菌細胞を効率的に処理するすべてのこれらを実現する予定です。プロジェクト全体は、2つのモジュールに分割することができます:
+
-
 
+
-
====モジュール I: 建設ののライブラリ====
+
-
 
+
-
====モジュール II: フィルタの特定の抗体====
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
<!--- To Gu Xiang ----->
+
-
<!--- When you want to start wiki code, type "</html>" to end HTML code.
+
-
Then type wiki code as you like.
+
-
When you're finished, type "<html>" to continue HTML code -------------------->
+
-
<!------------
+
-
All the wiki codes should be inserted above this <html>, or they'll get weird.
+
-
                                                                ----------->
+
-
<html>
+
</div></div>
</div></div>
</body>
</body>
</html>
</html>

Latest revision as of 15:41, 21 October 2010

Until Jamboree

days

hours

minutes

seconds

Follow us on


Visitor Locations

Join the conversation

Team

We're from Tsinghua University.

Since China opened up to the world in 1978, Tsinghua University has developed at a breathtaking pace into a comprehensive research university. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University has now over 25,900 students, including 13,100 undergraduates and 12,800 graduate students. As one of China’s most renowned universities, Tsinghua has become an important institution for fostering talent and scientific research.

With the motto of “Self-Discipline and Social Commitment” and the spirit of “Actions Speak Louder than Words”, Tsinghua University is dedicated to the well-being of Chinese society and to world development.

More...

Project

Monoclonal antibodies (mAb or moAb) are monospecific antibodies that are the same, made by identical immune cells that are all clones of a unique parent cell. When stimulated by almost any type of antigen, the immune system can create the specific antibody. This lays the foundation for monoclonal artificial antibodies.

The current most well-developed technique in Artificial Monoclonal Antibody is the famous Hybridoma Cell Production. Monoclonal antibodies are typically made by fusing myeloma cells with the spleen cells from a mouse that has been immunized with the desired antigen. The success rate is so low that a selective medium in which only fused cells can grow is used. This mixture of cells is then diluted and clones are grown from single parent cells on microtitre wells. The antibodies secreted by the different clones are then assayed for their ability to bind to the antigen. The most productive and stable clone is then selected for future use.

More...

Parts

We built a host of parts during our project. The idea is that after every small step, we store our sequence as a biobrick part.

This strategy marks our progress and facilitates future use of these sequences.

More...

Experiment

Our experiments are carefully recorded on a daily basis. Through the series of records, we can see our joys and sorrows.

Besides, we made the records for the purpose that our experiments can be repeated one day by someone else, thus contributing to the exploration of the unknown.

More...

Support

Our project is supported by School of Life Sciences, Department of Physics, Academy of Arts and Designs in Tsinghua.

Besides, we cited from a series of references.

More...

Human Practice

We put safety as our first priority and made a detailed safety brochure.

We also devoted efforts to publicize synthetic biology and to cooperate with other teams. The teams in China held a summer meetup to discuss our progress and share our resources. We also held a lecture introducing iGEM and our project in Tsinghua Univeristy. To get further support, we sought the cooperation of iGEM Team at Macquire, Australia.

More...