Team:SDU-Denmark/project-m

From 2010.igem.org

(Difference between revisions)
(4. Flagella dynamics)
(5. A 2-D model of the system)
Line 88: Line 88:
In this chapter we will present our model a bit more precisely and present some of the results it has given us.
In this chapter we will present our model a bit more precisely and present some of the results it has given us.
-
The 2-D model consists of a one dimensional grid, to which flagella are attached. Each flagellum produces a force which creates a flow which pushed every other flagellum, and thus a dynamic system is created. To calculate how big the flow will be at a given point, a vector from the tip of the force-producing flagellum to the point where the you wish to know the flow must be created. To know how a flagellum is affected by the flow, the flow at the tip of the flagellum must be calculated. The situation is sketched in figure XX.  
+
The 2-D model consists of a one dimensional grid, to which flagella are attached. Each flagellum produces a force which creates a flow which pushed every other flagellum, and thus a dynamic system is created. To calculate how big the flow will be at a given point, a vector from the tip of the force-producing flagellum to the point where the you wish to know the flow must be created. To know how a flagellum is affected by the flow, the flow at the tip of the flagellum must be calculated.  
-
The compleatly velocity controled equation of motion then becomes(using the notation in figure XX):
+
Once you have this vector and the vector corresponding to the force. The flow can be calculated using stokeslet or the Oseen-Blake tensor depending on whether there is a wall nearby. In our system there is a wall so we will be using the Oseen-Blake tensor. This means that we are also required to find a vector from the mirrorpoint of the force, to the point at which we wish to know the flow.
-
The best way to illustrate the result from this model is to see it in action, so here follow the time series of a system af size 20 (only the 4 flagella in the middel of the system i shown) where the elatic konstant is zero:
+
After this it is a matter of summarizing over all the flagella to find the total flowfield.
-
<html><center><object width="600" height="200"><param name="movie" value="http://www.youtube.com/v/XjkJIRt3IlI?fs=1&amp;hl=da_DK"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/XjkJIRt3IlI?fs=1&amp;hl=da_DK" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="600" height="200"></embed></object></center></html>
 
-
It is clear that the  
+
The situation (disregarding the mirrorpoint is sketched in figure XX.
 +
The completely velocity controlled equation of motion then becomes(using the notation in figure XX):
-
Once you have this vector and the vector corresponding to the force. The flow can be calculated using stokeslet or the Oseen-Blake tensor depending on whether there is a wall nearby. In our system there is a wall so we will be using the Oseen-Blake tensor. This means that we are also required to find a vector from the mirrorpoint of the force, to the point at which we wish to know the flow.
+
The best way to illustrate the result from this model is to see it in action, so here follows the time series of a system af size 20 (only the 4 flagella in the middel of the system is shown), where the elastic constant is zero:
-
After this it is a matter of summarizing over all the flagella to find the total flowfield.
+
<html><center><object width="600" height="200"><param name="movie" value="http://www.youtube.com/v/XjkJIRt3IlI?fs=1&amp;hl=da_DK"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/XjkJIRt3IlI?fs=1&amp;hl=da_DK" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="600" height="200"></embed></object></center></html>
 +
 
 +
It is clear that the flagella tends to lie down and stabilize in an almost flat position in this case.
=== 6. A stationary 2-D model ===
=== 6. A stationary 2-D model ===

Revision as of 20:40, 16 October 2010