Team:Newcastle/safety

From 2010.igem.org

(Difference between revisions)
(Safety Issues)
Line 18: Line 18:
(iii)'''Biological hazards''':
(iii)'''Biological hazards''':
-
Throughout the project, we used the ''Escherichia coli'' strain DH5α, ''Bacillus subtilis'' strain 3610, ''Bacillus subtilis'' strain 168 and ''Bacillus sphaericus''. Wild-type ''E. coli'' is classified as a hazard group 2 pathogen by the UK Advisory Committee on the Dangerous Pathogens (ACDP). However, ''E. coli'' strain DH5α is derived from a laboratory strain ''E. coli'' K12 strain, which is recognised as disabled and equivalent to an ACDP hazard group 1 organism (i.e. unlikely to cause disease). ''E. coli'' K12 and its derivatives such as strain DH5α are unable to colonise in humans or animals and consequently pose negligible risk to human or animal health. Wild-type ''Bacillus subtilis'' (i.e. strain 3610) is classified as an ACDP hazard group 1 organism and its derivative ''B. subtilis'' strain 168 has disabling auxotrophs mutations (e.g. conferring a requirement for tryptophan, Zeigler ''et al'', 2008) that makes it even less likely to colonise or cause harm to human or animal health. Also ''Bacillus sphaericus'' is classified as an ADCP hazard group 1 organism and is an auxothroph thereby making it unable to cause any harm to either human or animal health. The potential of any sequences cloned into these bacterial hosts during the project to pose additional hazards was also assessed. None of these sequences were associated with pathogenic traits or traits that might significantly enhance the survival outside the lab. Therefore, no specific safety issues, other than those associated with use of any non-pathogenic microorganism, were identified. It was concluded that containment level 1(CL1) would be sufficient to ensure researcher safety. Nonetheless, all work was carried out in strict compliance with the host laboratory's standard safety procedures, which were more stringent that those required for CL1.
+
Throughout the project, we used the ''Escherichia coli'' strain DH5α, ''Bacillus subtilis'' strain 3610, ''Bacillus subtilis'' strain 168 and ''Bacillus sphaericus'' strain LMG 22257. Wild-type ''E. coli'' is classified as a hazard group 2 pathogen by the UK Advisory Committee on the Dangerous Pathogens (ACDP). However, ''E. coli'' strain DH5α is derived from a laboratory strain ''E. coli'' K12 strain, which is recognised as disabled and equivalent to an ACDP hazard group 1 organism (i.e. unlikely to cause disease). ''E. coli'' K12 and its derivatives such as strain DH5α are unable to colonise in humans or animals and consequently pose negligible risk to human or animal health. Wild-type ''Bacillus subtilis'' (i.e. strain 3610) is classified as an ACDP hazard group 1 organism and its derivative ''B. subtilis'' strain 168 has disabling auxotrophs mutations (e.g. conferring a requirement for tryptophan, Zeigler ''et al'', 2008) that makes it even less likely to colonise or cause harm to human or animal health. Also ''Bacillus sphaericus'' LMG 22257 is classified as an ADCP hazard group 1 organism making it unlikely to cause any harm to either human or animal health. The potential of any sequences cloned into these bacterial hosts during the project to pose additional hazards was also assessed. None of these sequences were associated with pathogenic traits or traits that might significantly enhance the survival outside the lab. Therefore, no specific safety issues, other than those associated with use of any non-pathogenic microorganism, were identified. It was concluded that containment level 1(CL1) would be sufficient to ensure researcher safety. Nonetheless, all work was carried out in strict compliance with the host laboratory's standard safety procedures, which were more stringent that those required for CL1.
(iv)'''Other hazards''':
(iv)'''Other hazards''':

Revision as of 11:36, 27 October 2010

iGEM Homepage Newcastle University BacillaFilla Homepage Image Map

Safety Issues

These are the safety questions for the judging form:

1. Would any of your project ideas raise safety issues in terms of:

  • Researcher Safety:

We worked in the Centre for Bacterial Cell Biology (CBCB) at Newcastle University for the entire project, where there are clearly defined safety rules and regulations that all laboratory workers must follow. One of our advisors, Dr Wendy Smith, guided us through the first introductory week, before any laboratory work began. This included carrying out the following risk assessments to determine what control measures would be required.

(i)Chemical Hazards: At the beginning of the project written risk assessments were already available in the host laboratories for all procedures that involved potentially hazardous chemicals. These risk assessments were reviewed and the recommended control measures were strictly followed throughout. No additional chemical hazards specific to this project were identified.

(ii)Radioisotopes and carcinogens: None of them were used in this project.

(iii)Biological hazards: Throughout the project, we used the Escherichia coli strain DH5α, Bacillus subtilis strain 3610, Bacillus subtilis strain 168 and Bacillus sphaericus strain LMG 22257. Wild-type E. coli is classified as a hazard group 2 pathogen by the UK Advisory Committee on the Dangerous Pathogens (ACDP). However, E. coli strain DH5α is derived from a laboratory strain E. coli K12 strain, which is recognised as disabled and equivalent to an ACDP hazard group 1 organism (i.e. unlikely to cause disease). E. coli K12 and its derivatives such as strain DH5α are unable to colonise in humans or animals and consequently pose negligible risk to human or animal health. Wild-type Bacillus subtilis (i.e. strain 3610) is classified as an ACDP hazard group 1 organism and its derivative B. subtilis strain 168 has disabling auxotrophs mutations (e.g. conferring a requirement for tryptophan, Zeigler et al, 2008) that makes it even less likely to colonise or cause harm to human or animal health. Also Bacillus sphaericus LMG 22257 is classified as an ADCP hazard group 1 organism making it unlikely to cause any harm to either human or animal health. The potential of any sequences cloned into these bacterial hosts during the project to pose additional hazards was also assessed. None of these sequences were associated with pathogenic traits or traits that might significantly enhance the survival outside the lab. Therefore, no specific safety issues, other than those associated with use of any non-pathogenic microorganism, were identified. It was concluded that containment level 1(CL1) would be sufficient to ensure researcher safety. Nonetheless, all work was carried out in strict compliance with the host laboratory's standard safety procedures, which were more stringent that those required for CL1.

(iv)Other hazards: The project also involved conducting some work in the Engineering structures laboratory, where we made and broke concrete 'blocls'. Appropriate safety regulations for the type of work in this laboratory were followed. When we were in the structures lab, we wore safety goggles, steel toe cap boots and gloves, which will be able to protect us from lab based accidents.

  • Public Safety:

Our project concerns repairing cracks on concrete surfaces by spraying these surfaces with spores of engineered derivatives of Bacillus subtilis 168. It is recommended that workers carrying out the spraying should wear an appropriate face mask to minimize inhaling of spores. During the spraying procedure spores could escape into the surrounding environment, but their concentration will diluted very rapidly with distance, greatly reducing potential hazards away from the immediate area of spraying. As outlined above, B. subtilis 168 is non-pathogenic and therefore very unlikely to pose a risk to public safety, particularly since any escaping spores will be unable to germinate in the absence of culture media.

  • Environmental Safety:

For reasons outlined above, the E. coli strain DH5α has very limited ability to survive outside the laboratory so taht in the very unlikely event of escape, it will be unable to survive, disseminate with and/or displace other organisms. Therefore no specific environmental hazards associated with the E. coli strain were identified.

GM derivatives of Bacillus subtilis strain 168 will be released deliberately. This is a strain that has been maintained in the lab for 52 years, during which it has accumulated disabling mutations, such as tryptophan auxotrophy mentioned above, which greatly diminishes its ability to survive and disseminate outside the laboratory (Zeigler et al., 2008). It seems very unlikely that it could compete effectively and replace wild-type B. subtilis. Nonetheless, the release of any GMO into the environment has been a concern since early days of genetic engineering and one of our instructors (Prof. Anil Wipat) has previously studied such issues (Wipat, 1990). To minimise concerns about environmental safety, in this project we designed the Non-target-environment kill switch genetic part to prevent dissemination after release into the environment.

2. Do any of the new BioBrick parts (or devices) that you made this year raise any safety issues?

We do not see any safety issues for the new Biobricks parts that we made this year.

3. Is there a local biosafety group, committee, or review board at your institution?

Yes there is a biosafety group at the Centre for Bacterial Cell Biology and Institute of Cell and Molecular Biosciences, which includes the Institute Safety Officer (SSO), Biological Safety Supervisor (BSS), Genetic Modification Chairperson (GMC), Radiation Protection Supervisor (RPS), Laser Protection Officer and Lab Heads. They have reviewed the safety of the lab from time to time during the duration of the project.

  • If yes, what does your local biosafety group think about your project?

They are aware about the whole project and they reviewed it thoroughly with the whole team. They discussed about each and every Biobrick part in detail and found no safety issues with it.

4. Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?

A full risk assessment should be carried out before the work begins. This should consider: (i) Consequences of any identifiable hazard and (ii) The likelihood of the hazard arising. The risk can then be defined and appropriate control measures can be introduced to minimise the risk.


[1] Wipat, A. (1990). "Release and detection of geneticaly engineered streptomycetes in soil". Unpublished PhD thesis, Microbiology Department, John Moores University.

[2] Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T et al. (2008). "The origins of 168, W23, and other Bacillus subtilis legacy strains". Journal of bacteriology, 190(21), 6983-95.


Newcastle University logo.png    Newcastle cbcb logo.pngNewcastle Biomedicine logo.gif    Team Newcastle CEG logo.gif
Newcastle iww logo.jpg  UNIPV Pavia Logo.gif  Newcastle BBSRC.gif    Newcastle Genevision logo.png Newcastle WelcomeTrust.jpg
FaceBook Icon