Team:MIT safety

From 2010.igem.org

Revision as of 03:44, 27 October 2010 by Joy (Talk | contribs)

safety

Would any of your project ideas raise safety issues in terms of:

  • researcher safety
  • public safety, or
  • environmental safety?

This summer, our team branched off into the bacterial team and the mammalian team. The bacterial team worked in a BSL1 lab setting, and the mammalian team worked in both a BSL1 and a BSL2 lab. Both teams adhered to national and local safety protocols. Extra care was taken to not cross-contaminate lab spaces. A limited number of students worked with bacteriophage and mammalian cells. Work with phage and all materials involved with phage were confined to one fume hood, and the mammalian team worked in a BSL2 lab, separate from the bacterial team. Cross contamination from these settings were minimized by designating equipment specifically for phage, mammalian cells, and bacteria, as well as immediate change of personal protective equipment in moving between the different lab spaces.

Do any of the new BioBrick parts (or devices) that you made this year raise any safety issues?


Neither our bacteria nor our mammalian cells contain BioBrick parts that code for hazardous proteins or molecules.



Is there a local biosafety group, committee, or review board at your institution?


The EHS (Environment, Health, and Safety) Office is MIT's biosafety group that enforces lab safety in all labs on campus. They provide safety training, waste management services, and resources for safe lab practices. All undergraduates were trained by the EHS to work safely in BSL1 labs, and students working with mammalian cells underwent BSL2 lab safety training. Throughout the summer, the EHS helped us safely manage our biohazard waste.



Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?


The mammalian team has developed the MammoBlock construction standard that allows the construction of mammalian parts to take place in a BSL1 setting. Therefore, our MammoBlock standard makes mammalian part construction more accessible to future iGEM teams.

For each member of the mammalian team we have also optimized calcium phosphate transfection protocols for introducing DNA into mammalian cells. This procedure is nonhazardous, cheap, and simple to perform.