Team:MIT

From 2010.igem.org

(Difference between revisions)
 
(One intermediate revision not shown)
Line 35: Line 35:
</td>
</td>
<tr><td>
<tr><td>
-
 
<ul>
<ul>
<li style="margin: 3px; padding: 5px; display: inline-block; width:30%; height: 100px; background-color: #8b0000; opacity: 0.75;"><a style="color: white;" href="https://2010.igem.org/Team:MIT_results"><b style="font-size: large;">Results</b><br>Click to see our results in both bacterial and mammalian cells!</a></li>
<li style="margin: 3px; padding: 5px; display: inline-block; width:30%; height: 100px; background-color: #8b0000; opacity: 0.75;"><a style="color: white;" href="https://2010.igem.org/Team:MIT_results"><b style="font-size: large;">Results</b><br>Click to see our results in both bacterial and mammalian cells!</a></li>

Latest revision as of 01:14, 28 October 2010

MIT iGEM 2010

The 2010 MIT iGEM team. We are biological engineers, physicists, electrical engineers, chemical engineers, mathematicians, and computer scientists.
Programmable, Self-constructing Biomaterials

The 2010 MIT iGEM team focused on the control and production of self-constructing and self-repairing living biomaterials through both bacterial and
mammalian engineering. We ventured to set up the framework for material formation in both types of cells, for future applications in living, self-repairing materials and in vitro organogenesis respectively.

We have accomplished far beyond what we expected of ourselves! In addition to our project, we have created a new Mammalian Biobrick standard, contributed original parts for mammalian cells and bacteriophage, and we have biobricked two working toggles for the registry.