Team:HKUST/Reference

From 2010.igem.org

(Difference between revisions)
(New page: <!--HKUST page begins --> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Team: HKUST</title> <script type="...)
Line 41: Line 41:
</div>
</div>
-
<div id="module_1">
+
div id="body_content_project">
-
<p class="h1"><b>Experiment Design</b></p>
+
<div id="sidebar">
-
<p class="h2"><b>1. Construction of Chimeric AIP Receptor<br />
+
<ul>
-
2. Localization Test of Chimeric AIP Receptor <br />
+
        <li><h3 class="cat">Team</h3></li>
-
3. Functionality Test of the Chimeric AIP Receptor<br />
+
        <li><a href="https://2010.igem.org/Team:HKUST">Here we are!</a></h3></li>
-
4. Construction of RIP Production Cassette<br />
+
       
-
5. Secretion Test of Hybrid Inhibiting Peptides<br />
+
        <li><h3 class="cat">Project</h3></li>
-
6. Bio-assay of the Reporter Plasmid<br />
+
        <li><a href="https://2010.igem.org/Team:HKUST/Project">Abstract</a></li>
-
7. Functionality Test of Hybrid Inhibiting Peptides</p>
+
<li><a href="https://2010.igem.org/Team:HKUST/Project/Module_1">Module 1</a></li>
 +
<li><a href="https://2010.igem.org/Team:HKUST/Project/Module_2">Module 2</a></li>
 +
 +
<li><h3 class="cat">Lab Notebook</h3></li>
 +
<li><a href="https://2010.igem.org/Team:HKUST/Notebook">Calender</a></li>
 +
                   
 +
        <li><h3 class="cat">Human Pratice</h3></li>
 +
        <li><a href="https://2010.igem.org/Team:HKUST/Human_Practice#workshop">Workshop</a></li>
 +
        <li><a href="https://2010.igem.org/Team:HKUST/Human_Practice#comments">Comments</a></li>
 +
        <li><a href="https://2010.igem.org/Team:HKUST/Human_Practice#memories">Memories</a></li>
-
<p class="h2"><b>1. Construction of Chimeric AIP Receptor</b></p>
+
        <li><h3 class="cat">Gallery</h3></li>
-
<p class="content">Johnsborg, <em>et al</em>.  reported in his study that the transmembrane  domain, other than the cytoplasmic domain, of a pheromone receptor would be  responsible for the inducing specificity of corresponding signal molecules <strong>[1]</strong>.<strong> </strong>A fusion  AIP sensor, AgrC (transmembrane domain) - PlnB (cytoplasmic catalytic domain),  is designed to sense AIP molecules released by <em>S.aureus</em> and thereby activate <em>Lactobacillus </em>endogenous response regulators.</p>
+
        <li><a href="https://2010.igem.org/Team:HKUST/Gallery#workshop">Workshop</a></li>
-
<p class="content">We fused the  transmembrane domain of AgrC (amino acid 1-188, AIP receptor in <em>S.aureus</em>) with the cytoplasmic HPK  domain of PlnB (amino acid 212-441, pheromone receptor in <em>L.plantarum </em>WCFS1). The fusion point is Leucine, a conserved amino  acid in both AgrC and PlnB (186 in AgrC/212 in PlnB), linking the transmembrane  domain and cytoplasmic HPK domain. The AgrC-PlnB chimeric receptor was cloned  into the multiple cloning site of <em>e.coli  - Lactobacillus</em> shuttle vector pMG36e, which contains a constitutive  promoter P32.
+
-
<br />
+
        <li><h3 class="cat">Acknowledgement</h3></li>
-
+
<li><a href="https://2010.igem.org/Team:HKUST/Acknowledgement#igem">HKUST iGEM team</a></li>
-
<br/>
+
        <li><a href="https://2010.igem.org/Team:HKUST/Acknowledgement#workshop">Workshop</a></li>
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-1.jpg" width="500" />
+
</ul>
-
</p>
+
</div>
-
<p class="h2">2. Localization Test of Chimeric AIP Receptor</p>
+
-
<p class="content">To  first examine the proper localization of AgrC-PlnB on the membrane of <em>L. plantarum </em>WCFS1, coding sequence of  fluorescence protein mCherry was added after the chimeric receptor AgrC-PlnB. Since  the N terminal of AgrC and PlnB is putatively associated with membrane  localization, mCherry is fused at C terminal of the fusion construct, as  denoted below:
+
-
<br />
+
-
+
-
<br/>
+
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-2.jpg" width="700" />
+
-
</p>
+
-
<p class="content">The localization  test will be performed by observing pMG36e-transformed <em>L. plantarum WCFS1</em> under fluorescence microscope.</p>
+
-
<p class="h2"><b>3. Functionality Test of the Chimeric AIP Receptor</b></p>
+
<div id="module_1">
-
<p class="h2"><b>Experiment 1: Test in <em>L.plantarum</em> WCFS1</b></p>
+
<p class="h1"><b>Reference</b></p>
-
<p class="content">The GusA reporter  assay will be used in testing the functionality of the chimeric receptor AgrC-PlnB  in <em>L. plantarum </em>WCFS1. A gusA  reporter unit consisting of an inducible plnA promoter and a gusA reporter gene  was cloned into pMG36e at upstream of P32 promoter; the agrC/agrC-plnB was  cloned into the multiple cloning site of pMG36e which is at the downstream of  P32 promoter. As for the control groups, an empty pMG36e and a pMG36e which 1has only the gusA reporter unit were prepared. The construct-inserted shuttle  vectors will then be transformed into <em>L. plantarum </em>WCFS1.</p>
+
<p class="h1"><b>References for Background</b></p>
-
<p><br />
+
<ol class="reference">
 +
  <li>Ryan, K.J., Ray, C.G., &amp; Ahmad, N. (2004). Sherris medical microbiology. McGraw-Hill. </li>
 +
  <br />
    
    
-
   <br/>
+
   <li>Kluytmans, J., van Belkum, A., &amp; Verbrugh, H. (1997).  Nasal carriage of <em>Staphylococcus aureus</em>: epidemiology, underlying mechanisms, and associated risks. <em>Clin Microbiol Rev</em>, <em>10</em>(3), 505-520. </li>
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-3.jpg" width="700" /></p>
+
  <br />
-
 
+
-
<p class="content">Each of the four  groups aforementioned will be treated by 1) AIP (inducing peptide for <em>S. aureus</em>) induction 2) IP (inducing peptide for <em>Lactobacillus</em>) induction and 3) control without pheromone induction. </p>
+
-
 
+
-
<p class="content">Due to the  existence of endogenous <em>pln</em> locus in <em>L. plantarum </em>WCFS1, response regulator  PlnC would possibly bind to the plnA promoter in shuttle vector pMG36e as well  as the plnA promoter in <em>L. plantarum </em>WCFS1  genomic DNA. PlnA in the genomic DNA would then synthesize inducing peptides IP, which could bind to the original transmembrane sensor PlnB. Consequently,  phosphorylated PlnC would result in background noise for testing our designed  constructs. In another word, the natural pathway of <em>pln</em> quorum sensing and the introduced pathway of AIP signal transduction  would interfere with each other; the gusA expression level could not directly  indicate the response from chimeric AIP sensor.
+
-
<br />
+
    
    
-
   <br/>
+
   <li>Franklin, D., &amp; Lowy, F.D(1998). <em>Staphylococcus aureus</em> infections. <em>N Engl J Med</em>,&nbsp;<em>339</em>(27), 520-532. </li>
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-4.jpg" width="550" /></p>
+
  <br />
-
<p class="content">Once synthesized IP, synthesized AIP or placebo was applied, GusA expression level would be examined every 1 hour for consecutive 10 hours. Group 3) is expected to give the highest level of gusA expression among all AIP-induced groups.</p>
+
-
<p class="h2"><b>Experiment 2: Test in <em>L.sakei</em> Lb790</b></p>
+
-
<p class="content">To  reduce the noise brought by the cross talk between the natural pathway of <em>pln</em> quorum sensing and the introduced  pathway of AIP signal transduction, modified constructs will be built and  transformed into <em>L. sakei </em>Lb790, a <em>Lactobacillus</em> strain which does not have  the <em>pln</em> locus. A new part of plnC  following RBS is added to the construct to enable the proper signal  transduction.
+
-
<br />
+
    
    
-
   <br/>
+
   <li>Kiran, M.D., Adikesavan, N.V., Cirioni, O., Giacometti, A., Silvestri, C., Scalise,  G., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ghiselli%20R%22%5BAuthor%5D">Ghiselli, R</a>., Saba, V., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Orlando%20F%22%5BAuthor%5D">Orlando, F</a>., Shoham, M., &amp; <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Balaban%20N%22%5BAuthor%5D">Balaban, N</a>. (2008). Discovery of a quorum-sensing inhibitor of drug-resistant Staphylococcal infections by structure-based  virtual screening. <em>Mol Pharmacol</em>, <em>73</em>(5), 718-726.  </li>
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-5.jpg" width="700" />
+
  <br />
-
 
+
-
<p class="content">GusA expression  level will be measured 3 hours after pheromone induction. Compared with the  control groups, the chimeric receptor AgrC-PlnB would be proved to be  functional if the GusA expression was comparatively high.</p>
+
-
<p class="h2"><b>4. Construction of RIP Production Cassette</b></p>
+
-
<p class="content">An expression cassette (Construct 1) is designed to express the hybrid  peptide DD13-RIP and drive its secretion to extracellular environment. A signal peptide is introduced to the construct to direct the secretion process since  there is no evidence showing that DD13-RIP can be automatically secreted out by <em>L. plantarum</em>. Another construct (Construct 2), with only  P32 promoter and the hybrid peptide DD13-RIP, serves as a control for the test.  
+
-
<br />
+
    
    
-
   <br/>
+
   <li>Sturme, M.H.J.,  Francke, C., Siezen, R.J., de Vos, W.M., &amp; Kleerebezem, M. (2007). Making sense of quorum sensing in <em>lactobacilli</em>: a  special focus on <em>lactobacillus plantarum wcfs1</em>.&nbsp;<em>Microbiology</em>,&nbsp;153, 3939–3947.  </li>
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-6.jpg" width="700" />
+
  <br />
-
</p>
+
-
<p class="content">Construct 1 consists of signal peptide lp_0297, a linker and the hybrid peptide DD13-RIP. The whole construct is cloned into plasmid pMG36e, a shuttle  vector in <em>E. coli</em> and <em>Lactobacilli </em>[2]. P32 promoter, a constitutive promoter in <em>E. coli </em>and <em>L. plantarum</em> is located at the upstream  of this construct [3, 4]. Signal peptide lp_0297 is selected here due to its  high efficiency in secreting peptides and proteins in <em>L. plantarum</em> WCFS1 [5]. The linker is to ensure that the separation of signal peptide and hybrid peptide DD13 – RIP operates well and does not  affect the normal function of the hybrid peptide. The original terminator in pMG36e will stop  the transcription process. The whole construct is under the regulation of P32  promoter and the aforementioned terminator. </p>
+
-
<p class="h2"><b>5. Secretion Test of Hybrid Inhibiting Peptides</b></p>
+
-
<p class="content">Since the hybrid peptide DD13-RIP is a 21-residue peptide, for which the secretion efficiency of lp_0297 is unknown, a function test is designed to determine the secretion efficiency. Two constructs will be made in this experiment:
+
-
<br />
+
    
    
-
   <br/>
+
   <li>Kleerebezem, M.,  Quadri, L. E. N., Kuipers, O. P. &amp; De Vos, W. M.(1997). Quorum sensing by peptide pheromones and two-componentsignal-transduction systems in  Gram-positive bacteria. <em>Molecular  Microbiology</em>, l24, 895–904.  </li>
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-7.jpg" width="700" />
+
  <br />
-
</p>
+
-
<p class="content">In both constructs, FLAG-tag is added before hybrid peptide DD13-RIP. After transformation and selection, <em>L. plantarum</em> containing either Construct 2 or 3 will be harvested  at the late exponential or early stationary phase. Western blot will be applied  to examine the amount of peptide secreted.</p>
+
-
 
+
-
<p class="h2"><b>6. Bio-assay of the Reporter Plasmid</b></p>
+
-
<p class="content">Plasmid pRN6683, a P3-blaZ fusion plasmid serving as a  reporter gene of RNAIII, is commonly used in bio-assay for RNAIII synthesis <strong>[6]</strong> P3 promoter in AgrBDCA system is the promoter of RNAIII, and blaZ is a <em>S. aureus</em> β-lactamase encoding gene <strong>[7]</strong> With P3 promoter and blaZ gene, pRN6683 could reflect the activity level of RNAIII  by synthesizing β-lactamase. The activity of β-lactamase is measured by through  its reaction with nitrocefin <strong>[8]</strong>. </p>
+
-
<p class="content">Both pRN6683-transformed and normal <em>S. aureus</em> strains are exposed to  nitrocefin in early exponential phase <strong>[8]</strong>. The cells are then harvested for optical density test. Only pRN6683-transformed cells are expected to have strong degradation effect  on nitrocefin. </p>
+
-
<p class="content">After confirming the positive transformation of  reporter plasmid pRN6683, bio-assay of DD13-RIP can be conducted. According to  the methods described above, the supernatant of <em>L. plantarum</em> (transformed with Construct 1 and 2) will be added to <em>S. aureus</em> culture (transformed with  pRN6683) at their early exponential stage <strong>[6, 9]</strong>. A standard curve of the concentration decrease  of nitrocefin vs. time can be used to estimate the inhibitive effect of  DD13-RIP. </p>
+
-
<p class="h2"><b>7. Functionality Test of Hybrid Inhibiting Peptides</b></p>
+
-
<p class="content">Both Construct 1 and 2 are also designed to test the inhibitive effect on RNAIII of secreted DD13-RIP. These two constructs will determine the secretion and function of DD13-RIP. After replacing P32 promoter with plnA promoter, this new construct will be made into a new construct with the chimeric AIP receptor.
+
-
<br />
+
    
    
-
   <br/>
+
  <li>Morfeldt, E., Janzon, L., Arvidson, S.,  and Lofdahl, S. (1988) Cloning of a chromosomal locus (exp) which regulates the  expression of several exoprotein genes in <em>Staphylococcus  aureus</em>. <em>Mol Gen Genet</em>, 211,  435–440.  </li>
-
<img src="http://ihome.ust.hk/~lzhu/website/figures/experiment%20design/fig-8.jpg" width="700" />
+
   <br />
-
</p>
+
 
 +
  <li>Ji, G., Beavis, R.C., and Novick, R.P. (1995) Cell  density control of staphylococcal virulence mediated by an octapeptide  pheromone. <em>Proc Natl Acad Sci USA</em>,  92, 12055–12059.  </li>
 +
  <br />
 +
 
 +
  <li>Novick,  R.P., Ross, H.F., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Projan%20SJ%22%5BAuthor%5D">Projan, S.J</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kornblum%20J%22%5BAuthor%5D">Kornblum, J</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kreiswirth%20B%22%5BAuthor%5D">Kreiswirth, B</a>., &amp; <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Moghazeh%20S%22%5BAuthor%5D">Moghazeh, S</a>. (1993). Synthesis of  Staphylococcal virulence factors is controlled by a regulatory RNA  molecule.&nbsp;<em>EMBO J</em>,&nbsp;<em>12</em>(10), 3967-3975.  </li>
 +
  <br />
 +
 
 +
  <li>Koenig, R.L., Ray,  J.L., Maleki, S.J., Smeltzer, M.S.,  Hurlburt, B.K. (2004). <em>Staphylococcus aureus</em> AgrA binding to  the RNAIII-<em>agr</em> regulatory  region.&nbsp;<em>J of Bacteriol</em>, <em>186</em>(22), 7549-7555.  </li>
 +
  <br />
 +
 
 +
  <li>Korem, M., Sheoran ,  A.S., Gov, Y., Tzipori, S., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Borovok%20I%22%5BAuthor%5D">Borovok, I</a>., &amp; Balaban, N. (2003).  Characterization of RAP, a quorum sensing activator of <em>Staphylococcus aureus</em>.&nbsp;<em>FEMS  Microbiol Lett</em>, <em>223</em>(2), 167-175.  </li>
 +
  <br />
 +
 
 +
  <li>Balaban, N., Goldkorn, T., Gov, Y., Hirshberg, M., Koyfman, N., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Matthews%20HR%22%5BAuthor%5D">Matthews, H.R</a>., Nhan, R.T., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Singh%20B%22%5BAuthor%5D">Singh, B</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Uziel%20O%22%5BAuthor%5D">Uziel, O</a>. (2001). Regulation of <em>Staphylococcus aureus</em> pathogenesis via  target of RNAIII-activating protein (TRAP).&nbsp;<em>J Biol Chem</em>,&nbsp;<em>276</em>(4),  2658-2667. </li>
 +
  <br />
 +
 
 +
  <li>Novick RP,  Projan SJ, Kornblum J, Ross HF, Ji G, et al. 1995. The agr P2 operon: an  autocatalytic sensory transduction system in taphylococcus aureus. <em>Mol. Gen. Genet</em>, 248, 446–58.   </li>
 +
  <br />
 +
 
 +
  <li>Novick, R. P. &amp;  Geisinger, E. (2008). Quorum sensing in <em>Staphylococci</em><em>. Annual Review of Genetics, 42,</em><em>&nbsp;</em>541–64.  </li>
 +
  <br />
 +
 
 +
  <li>Gov,  Y., Borovok, I., Korem, M., Singh, V.K., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jayaswal%20RK%22%5BAuthor%5D">Jayaswal, R.K</a>., Wilkinson, B.J., Rich, S.M., &amp;  Balaban, N. (2004). Quorum  sensing in <em>Staphylococci</em> is regulated  via phosphorylation of three conserved histidine residues.&nbsp;<em>J Biol Chem</em>, <em>279</em>(15), 14665-14672.  </li>
 +
  <br />
 +
 
 +
  <li>Geisinger, E.,  George, E.A., Muir, T.W., &amp; Novick, R.P.(2008). Identification of ligand  specificity determinants in agrc, the <em>staphylococcus  aureus</em> quorum-sensing receptor .&nbsp;<em>The  Journal of Biological Chemistry</em>,&nbsp;283(14), 8930–8938. </li>
 +
  <br />
 +
 
 +
  <li>Jarraud, S.,  Mougel, C., Thioulouse, J., &amp; Lina, G. (2002). Relationships between <em>staphylococcus aureus</em> genetic  background, virulence factors, agr groups (alleles), and human disease .&nbsp;<em>Infection and Immunity</em>,&nbsp;70(2),  631–641.  </li>
 +
  <br />
 +
 
 +
  <li>Gov, Y., Bitler, A.,  Dell'Acqua, G., Torres, J.V.,  &amp; Balaban, N. (2001). RNAIII inhibiting peptide (RIP), a global inhibitor of <em>Staphylococcus aureus</em> pathogenesis:  structure and function analysis.&nbsp;<em>Peptides</em>,&nbsp;<em>22</em>(10), 1609-1620.  </li>
 +
  <br />
 +
 
 +
  <li>Johnsborg, O.,  Diep, D. B. &amp; Nes, N. F. (2003). Structural analysis of the peptide  pheromone receptor plnB, a histidine protein kinase from <em>Lactobacillus plantarum</em><em>. Journal of  Bacteriology, 185</em><em>&nbsp;</em>(23),  6913–6920.  </li>
 +
  <br />
 +
 
 +
  <li>Balaban, N., &amp;  Novick, R.P. (1995). Autocrine regulation of toxin synthesis by <em>Staphylococcus aureus</em>.&nbsp;<em>Proc Natl Acad Sci U S A</em>,&nbsp;<em>92</em>(5), 1619-1623.    </li>
 +
  <br />
 +
 
 +
  <li>Costerton JW, Montanaro L, Arciola CR. (2007). Bacterial  communications in implant infections: a target for an intelligence war.<em> Int J  Artif Organs.</em> 30(9):757-63.</li>
 +
  <br />
 +
 
 +
  <li>Novick, R.P., Ross,  H.F., Figueiredo, A.M.S., Abramochkin, G., Muir, T., Balaban, N., Singh, B.,  Goldkorn, T., Rasooly, A., Torres, J.V., &amp; Uziel, O. (2000). Activation and  inhibition of the Staphylococcal<em> agr</em> system.&nbsp;<em>Science</em>,&nbsp;<em>287</em>, 391. </li>
 +
  <br />
 +
 
 +
  <li>Balaban, N., Collins, L.V., Cullor, J.S.,  Hume, E.B., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Medina-Acosta%20E%22%5BAuthor%5D">Medina-Acosta,  E</a>., Vieira da Motta, O., O'Callaghan, R.,  Rossitto, P.V., Shirtliff, M.E., Serafim da Silveira, L., Tarkowski, A., &amp;  Torres, J.V. (2000). Prevention  of diseases caused by <em>Staphylococcus  aureus</em> using the peptide RIP.&nbsp;<em>Peptides</em>,&nbsp;<em>21</em>(9), 1301-1311. </li>
 +
  <br />
 +
 
 +
  <li>Balaban, N.,  Goldkorn, T., Nhan, R.T., Dang,  L.B., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Scott%20S%22%5BAuthor%5D">Scott, S</a>., Ridgley, R.M., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rasooly%20A%22%5BAuthor%5D">Rasooly, A</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wright%20SC%22%5BAuthor%5D">Wright, S.C</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Larrick%20JW%22%5BAuthor%5D">Larrick, J.W</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rasooly%20R%22%5BAuthor%5D">Rasooly, R</a>., &amp; Carlson, J.R. (1998). Autoinducer  of virulence as a target for vaccine and therapy against <em>Staphylococcus aureus</em>. <em>Science</em>,&nbsp;<em>280</em>(5362), 438-440. </li>
 +
  <br />
 +
 
 +
  <li>Balaban, N., Gov, Y., Giacometti, A., Cirioni, O., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ghiselli%20R%22%5BAuthor%5D">Ghiselli, R</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mocchegiani%20F%22%5BAuthor%5D">Mocchegiani, F</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Orlando%20F%22%5BAuthor%5D">Orlando, F</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22D%27Amato%20G%22%5BAuthor%5D">D'Amato, G</a>., Saba, V., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Scalise%20G%22%5BAuthor%5D">Scalise, G</a>., <a href="http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bernes%20S%22%5BAuthor%5D">Bernes, S</a>., &amp; Mor, A. (2004). A chimeric peptide  composed of a dermaseptin derivative and an RNAIII-inhibiting peptide prevents  graft-associated infections by antibiotic-resistant <em>Staphylococci</em>.&nbsp;<em>Antimicrob  Agents Chemother</em>,&nbsp;<em>48</em>(7),  2544-2550.  </li>
 +
  <br />
 +
 
 +
</ol>
 +
<p class="h1"><b>References for Experiment Design</b></p>
 +
<ol class="reference">
 +
  <li>Johnsborg, O., Diep, D. B. &amp; Nes, N.  F. (2003). Structural analysis of the peptide pheromone receptor plnB, a  histidine protein kinase from <em>Lactobacillus  plantarum</em><em>. </em><em>Journal of Bacteriology</em><em>, 185</em><em>&nbsp;</em>(23), 6913–6920. </li>
 +
  <br />
 +
  <li>Gov, Y., Bitler, A.,  Dell'Acqua, G., Torres, J.V.,  &amp; Balaban, N. (2001). RNAIII inhibiting peptide (RIP), a global inhibitor of <em>Staphylococcus aureus</em> pathogenesis:  structure and function analysis.&nbsp;<em>Peptides</em>,&nbsp;<em>22</em>(10), 1609-1620. </li>
 +
  <br />
 +
  <li>Van de Guchte, M., van der Vossen, J.M.B.M, Kok, J.,  &amp; Venema, G. (1989). Construction  of a Lactococcal expression vector: expression of hen egg white lysozyme in <em>Lactococcus lactis</em> subsp. <em>lactis</em>. <em>Appl Environ Microbiol</em>,&nbsp;<em>55</em>(1),  224-228.</li>
 +
  <br />
 +
  <li>Van Der Lelie, D., Van Der Vossen, J.M.B.M., &amp; Venema,  G. (1987). Isolation and  characterization of Streptococcus cremoris wg2-specific promoters.&nbsp;<em>Appl Environ Microbiol</em>,&nbsp;<em>53</em>(10), 2452-2457.</li>
 +
  <br />
 +
  <li>Pretzer, G., Snel, J., Molenaar, D., &nbsp;Wiersma,  A.,&nbsp;Bron, P.A.,&nbsp;Lambert, J.,&nbsp;de Vos, W.M.,&nbsp;van der Meer,  R.,&nbsp;Smits, M.A.,&nbsp;&amp; Kleerebezem, M. (2005). Biodiversity-based identification and  functional characterization of the mannose-specific adhesin of <em>Lactobacillus plantarum</em>.&nbsp;<em>J Bacteriol</em>,&nbsp;<em>187</em>(17), 6128-6136.</li>
 +
  <br />
 +
  <li>Mathiesen, G., Sveen, A., Brurberg, M.B., Fredriksen, L., Axelsson, L., &amp;  Eijsink, V.G. (2009). Genome-wide analysis of  signal peptide functionality in <em>Lactobacillus  plantarum</em> WCFS1. <em>BMC Genomics</em>,&nbsp;<em>10</em>(425).</li>
 +
  <br />
 +
  <li>Saunders,  C.W.,&nbsp;Schmidt, B.J.,&nbsp;Mirot, M.S.,&nbsp;Thompson, L.D.,&nbsp;&amp; Guyer,  M.S. (1984). Use of Chromosomal integration in the establishment and expression  of blaz, a <em>Staphylococcus aureus</em> β-lactamase gene, in bacillus subtilis.&nbsp;<em>J Bacteriol</em>,&nbsp;<em>157</em>(3),  718-726.</li>
 +
  <br />
 +
  <li>Kiran,  M.D.,&nbsp;Adikesavan, N.V.,&nbsp;Cirioni, O.,&nbsp;Giacometti, A.,&nbsp;Silvestri,  C.,&nbsp;Scalise, G.,&nbsp;Ghiselli, R.,&nbsp;Saba, V.,&nbsp;Orlandor, F.,&nbsp;Shoham,  M.,&nbsp;&amp; Balaban, N. (2008). Discovery of a quorum-sensing inhibitor of  drug-resistant staphylococcal infections by structure-based virtual screening.  Molecular Pharmacology, 73(5), 718-726.</li>
 +
  <br />
 +
  <li>Balaban, N., &amp; Novick,  R.P. (1995). Autocrine regulation of toxin synthesis by Staphylococcus aureus. <em>Proc Natl Acad Sci U S A</em>, <em>92</em>(5), 1619-1623. </li>
 +
  <br />
 +
</ol>
 +
 
 +
</div>
 +
 
</div>
</div>

Revision as of 14:49, 11 October 2010

Team: HKUST

div id="body_content_project">

Reference

References for Background

  1. Ryan, K.J., Ray, C.G., & Ahmad, N. (2004). Sherris medical microbiology. McGraw-Hill. 

  2. Kluytmans, J., van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev, 10(3), 505-520. 

  3. Franklin, D., & Lowy, F.D. (1998). Staphylococcus aureus infections. N Engl J Med339(27), 520-532. 

  4. Kiran, M.D., Adikesavan, N.V., Cirioni, O., Giacometti, A., Silvestri, C., Scalise, G., Ghiselli, R., Saba, V., Orlando, F., Shoham, M., & Balaban, N. (2008). Discovery of a quorum-sensing inhibitor of drug-resistant Staphylococcal infections by structure-based virtual screening. Mol Pharmacol, 73(5), 718-726. 

  5. Sturme, M.H.J., Francke, C., Siezen, R.J., de Vos, W.M., & Kleerebezem, M. (2007). Making sense of quorum sensing in lactobacilli: a special focus on lactobacillus plantarum wcfs1Microbiology, 153, 3939–3947.  

  6. Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P. & De Vos, W. M.(1997). Quorum sensing by peptide pheromones and two-componentsignal-transduction systems in Gram-positive bacteria. Molecular Microbiology, l24, 895–904.  

  7. Morfeldt, E., Janzon, L., Arvidson, S., and Lofdahl, S. (1988) Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet, 211, 435–440.  

  8. Ji, G., Beavis, R.C., and Novick, R.P. (1995) Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA, 92, 12055–12059.  

  9. Novick, R.P., Ross, H.F., Projan, S.J., Kornblum, J., Kreiswirth, B., & Moghazeh, S. (1993). Synthesis of Staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J12(10), 3967-3975.  

  10. Koenig, R.L., Ray, J.L., Maleki, S.J., Smeltzer, M.S., Hurlburt, B.K. (2004). Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J of Bacteriol, 186(22), 7549-7555.  

  11. Korem, M., Sheoran , A.S., Gov, Y., Tzipori, S., Borovok, I., & Balaban, N. (2003). Characterization of RAP, a quorum sensing activator of Staphylococcus aureusFEMS Microbiol Lett, 223(2), 167-175.  

  12. Balaban, N., Goldkorn, T., Gov, Y., Hirshberg, M., Koyfman, N., Matthews, H.R., Nhan, R.T., Singh, B., Uziel, O. (2001). Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J Biol Chem276(4), 2658-2667. 

  13. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, et al. 1995. The agr P2 operon: an autocatalytic sensory transduction system in taphylococcus aureus. Mol. Gen. Genet, 248, 446–58.   

  14. Novick, R. P. & Geisinger, E. (2008). Quorum sensing in Staphylococci. Annual Review of Genetics, 42, 541–64.  

  15. Gov, Y., Borovok, I., Korem, M., Singh, V.K., Jayaswal, R.K., Wilkinson, B.J., Rich, S.M., & Balaban, N. (2004). Quorum sensing in Staphylococci is regulated via phosphorylation of three conserved histidine residues. J Biol Chem, 279(15), 14665-14672.  

  16. Geisinger, E., George, E.A., Muir, T.W., & Novick, R.P.(2008). Identification of ligand specificity determinants in agrc, the staphylococcus aureus quorum-sensing receptor . The Journal of Biological Chemistry, 283(14), 8930–8938. 

  17. Jarraud, S., Mougel, C., Thioulouse, J., & Lina, G. (2002). Relationships between staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease . Infection and Immunity, 70(2), 631–641.  

  18. Gov, Y., Bitler, A., Dell'Acqua, G., Torres, J.V., & Balaban, N. (2001). RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis. Peptides22(10), 1609-1620.  

  19. Johnsborg, O., Diep, D. B. & Nes, N. F. (2003). Structural analysis of the peptide pheromone receptor plnB, a histidine protein kinase from Lactobacillus plantarum. Journal of Bacteriology, 185 (23), 6913–6920.  

  20. Balaban, N., & Novick, R.P. (1995). Autocrine regulation of toxin synthesis by Staphylococcus aureusProc Natl Acad Sci U S A92(5), 1619-1623.   

  21. Costerton JW, Montanaro L, Arciola CR. (2007). Bacterial communications in implant infections: a target for an intelligence war. Int J Artif Organs. 30(9):757-63.

  22. Novick, R.P., Ross, H.F., Figueiredo, A.M.S., Abramochkin, G., Muir, T., Balaban, N., Singh, B., Goldkorn, T., Rasooly, A., Torres, J.V., & Uziel, O. (2000). Activation and inhibition of the Staphylococcal agr system. Science287, 391. 

  23. Balaban, N., Collins, L.V., Cullor, J.S., Hume, E.B., Medina-Acosta, E., Vieira da Motta, O., O'Callaghan, R., Rossitto, P.V., Shirtliff, M.E., Serafim da Silveira, L., Tarkowski, A., & Torres, J.V. (2000). Prevention of diseases caused by Staphylococcus aureus using the peptide RIP. Peptides21(9), 1301-1311. 

  24. Balaban, N., Goldkorn, T., Nhan, R.T., Dang, L.B., Scott, S., Ridgley, R.M., Rasooly, A., Wright, S.C., Larrick, J.W., Rasooly, R., & Carlson, J.R. (1998). Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science280(5362), 438-440. 

  25. Balaban, N., Gov, Y., Giacometti, A., Cirioni, O., Ghiselli, R., Mocchegiani, F., Orlando, F., D'Amato, G., Saba, V., Scalise, G., Bernes, S., & Mor, A. (2004). A chimeric peptide composed of a dermaseptin derivative and an RNAIII-inhibiting peptide prevents graft-associated infections by antibiotic-resistant StaphylococciAntimicrob Agents Chemother48(7), 2544-2550.  

References for Experiment Design

  1. Johnsborg, O., Diep, D. B. & Nes, N. F. (2003). Structural analysis of the peptide pheromone receptor plnB, a histidine protein kinase from Lactobacillus plantarum. Journal of Bacteriology, 185 (23), 6913–6920.

  2. Gov, Y., Bitler, A., Dell'Acqua, G., Torres, J.V., & Balaban, N. (2001). RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis. Peptides22(10), 1609-1620.

  3. Van de Guchte, M., van der Vossen, J.M.B.M, Kok, J., & Venema, G. (1989). Construction of a Lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol55(1), 224-228.

  4. Van Der Lelie, D., Van Der Vossen, J.M.B.M., & Venema, G. (1987). Isolation and characterization of Streptococcus cremoris wg2-specific promoters. Appl Environ Microbiol53(10), 2452-2457.

  5. Pretzer, G., Snel, J., Molenaar, D.,  Wiersma, A., Bron, P.A., Lambert, J., de Vos, W.M., van der Meer, R., Smits, M.A., & Kleerebezem, M. (2005). Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarumJ Bacteriol187(17), 6128-6136.

  6. Mathiesen, G., Sveen, A., Brurberg, M.B., Fredriksen, L., Axelsson, L., & Eijsink, V.G. (2009). Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics10(425).

  7. Saunders, C.W., Schmidt, B.J., Mirot, M.S., Thompson, L.D., & Guyer, M.S. (1984). Use of Chromosomal integration in the establishment and expression of blaz, a Staphylococcus aureus β-lactamase gene, in bacillus subtilis. J Bacteriol157(3), 718-726.

  8. Kiran, M.D., Adikesavan, N.V., Cirioni, O., Giacometti, A., Silvestri, C., Scalise, G., Ghiselli, R., Saba, V., Orlandor, F., Shoham, M., & Balaban, N. (2008). Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Molecular Pharmacology, 73(5), 718-726.

  9. Balaban, N., & Novick, R.P. (1995). Autocrine regulation of toxin synthesis by Staphylococcus aureus. Proc Natl Acad Sci U S A, 92(5), 1619-1623.