Team:Gothenburg-Sweden/chalmers

From 2010.igem.org

(Difference between revisions)
 
(3 intermediate revisions not shown)
Line 128: Line 128:
.contentleft {
.contentleft {
-
width: 440px;
+
width: 600px;
padding-left: 30px;
padding-left: 30px;
padding-right: 20px;
padding-right: 20px;
Line 175: Line 175:
}
}
-
.Accordion {
 
-
overflow: hidden;
 
-
width: 255px;
 
-
}
 
-
 
-
 
-
.AccordionPanel {
 
-
margin: 0px;
 
-
padding: 0px;
 
-
}
 
-
 
-
 
-
.AccordionPanelTab {
 
-
color: #394867;
 
-
margin: 0px;
 
-
cursor: pointer;
 
-
padding: 10px 30px 10px 20px;
 
-
font-weight: bold;
 
-
-moz-user-select: none;
 
-
-khtml-user-select: none;
 
-
background-repeat: no-repeat;
 
-
background-image: url(https://static.igem.org/mediawiki/2010/3/3f/Accordion_255_tab_normal.gif);
 
-
}
 
-
 
-
 
-
.AccordionPanelContent {
 
-
margin: 0px 0px 0px 0px;
 
-
padding: 0px 0px 0px 0px;
 
-
background-image: url(https://static.igem.org/mediawiki/2010/9/9a/Accordion_255_tile.gif);
 
-
}
 
-
 
-
 
-
 
-
.AccordionPanelOpen .AccordionPanelTab {
 
-
color: #d88a37;
 
-
background-image: url(https://static.igem.org/mediawiki/2010/7/7d/Accordion_255_tab_down.gif);
 
-
}
 
-
 
-
 
-
 
-
.AccordionPanelTabHover {
 
-
background-image: url(https://static.igem.org/mediawiki/2010/1/1f/Accordion_255_tab_over.gif);
 
-
}
 
-
 
-
 
-
.AccordionFocused .AccordionPanelTab {
 
-
background-color: #000000;
 
-
}
 
-
 
-
 
-
.AccordionFocused .AccordionPanelOpen .AccordionPanelTab {
 
-
background-color: #000000;
 
-
}
 
-
 
-
 
-
/* Custom AUC classes */
 
-
 
-
#accordion_255 {
 
-
background-image: url(https://static.igem.org/mediawiki/2010/9/9a/Accordion_255_tile.gif);
 
-
background-repeat: repeat-y;
 
-
background-position: 0px 0px;
 
-
}
 
-
 
-
.tabTop {
 
-
background-position: 0px 0px;
 
-
padding-top: 15px;
 
-
}
 
-
.middleTab {
 
-
background-position: 0px -151px;
 
-
}
 
-
 
-
.accordion_255_tab {
 
-
margin: 0px;
 
-
font-weight: bold;
 
-
}
 
-
 
-
.acontent {
 
-
height:200px;
 
-
width:220px;
 
-
overflow: auto;
 
-
padding: 5px 10px 10px 20px;
 
-
}
 
-
 
-
.AccordionBottom {
 
-
width: 255px;
 
-
height: 33px;
 
-
background-repeat: no-repeat;
 
-
background-position: 0px bottom;
 
-
background-image: url(https://static.igem.org/mediawiki/2010/5/5d/Accordion_255_bottom.gif);
 
-
}
 
</style>
</style>
Line 300: Line 210:
<h1>Chalmers University of Technology</h1>
<h1>Chalmers University of Technology</h1>
<img src="https://static.igem.org/mediawiki/2010/d/d5/Gothenburg-Sweden_team_allmembers.jpg" width="270" height="197" border="0" class="imageright" />
<img src="https://static.igem.org/mediawiki/2010/d/d5/Gothenburg-Sweden_team_allmembers.jpg" width="270" height="197" border="0" class="imageright" />
-
<p>We are a team of 8 students from Chalmers University of Technology who will represent Gothenburg, SWEDEN in this year’s IGEM competition. IGEM stands for International Genetically Engineered Machines and is a competition based upon interdisciplinary collaboration of students on a Synthetic Biology project. The competition is held in MIT, Boston and is open to all universities from various countries world-wide. There are 180 teams participating this year with about 2000 students in total. We have started with a promising idea that combines the cutting edge technologies available in the field of Synthetic Biology. Our research basically includes the specification and designing of a biological system followed by the application of Molecular Biology techniques to build and test it experimentally. The premise of the competition for the students will be to learn engineering approaches and tools to organize, model, and assemble complex systems and to immerse themselves in applied molecular biology. In the project, we are investigating a biological phenomenon that is a part of insulin uptake mechanism, widely studied in Diabetic research. Our endeavor in the study is to visualize a part of the mechanism by making use of the Nobel Prize winning idea of the Green Fluorescent Proteins (GFPs). Hopefully, the project will provide us with auspicious outcomes to further improve the study of the disease.</p>
+
<p>We are a team of 8 students from Chalmers University of Technology who will represent Gothenburg, SWEDEN in this year’s IGEM competition. We have started with a promising idea that combines the cutting edge technologies available in the field of Synthetic Biology. Our research basically aims to constructing a reporter mechanism for cellular stress in yeast. This is done by tagging protein and peptides affiliated with the stress activated SNF1 complex with fluorescent markers.</p>
-
<img class="imageleft" src="images/content_photo_2.jpg" border="0" /><p>Consectetuer adipiscing elit. Morbi commodo, ipsum sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis. Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien.</p>
+
<p>The project is executed through two main experimental pathways. Both experimental setups will utilize FRET to visualize the conformational change that is the result of the activation of the SNF1 protein. The first approach consists of creating a fusion protein consisting of the SNF1 protein and two fluorescent proteins, namely EYFP and ECFP. The idea is that when the protein is activated it undergoes a conformational change and a FRET-signal will be visible. The second approach utilizes a SAMS-peptide with fluorescent proteins fused to each end. The SAMS-peptide will be phosphorylated by the active SNF1-complex and will undergo a conformational change that will be visible due to the fluorescent tags.</p>  
-
<p>Nulla libero. Vivamus pharetra pos uere sapien. Nam consectetuer. Sed aliq uam, <a href="#">nunc eget euismod ullamcorper</a>, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor.</p>
+
<p>The long term ambition of this project it is to use the results in the pharmaceutical industry when performing high-throughput screening for new substances or finding the correct drug concentrations to use. The yeast cells with the modified SNF-complex can be moved through a micro-fluidic system, gradually exposing them to an array of substances or a concentration gradient and easily finding out at which concentration or substance that the cells are stressed.</p>
-
</div>
+
<p>As of present we have constructed and ordered primers for all fusion proteins that will be tested if they give a FRET signal in yeast. We are also working on 3D models of the fusion protein and will soon be able to present docking predictions with the complex.
-
<div class="contentright">
+
</p>
-
<div id="SpryAccordion1" class="Accordion" tabindex="0">
+
<img class="imageleft" src="images/content_photo_2.jpg" border="0" />
-
<div class="AccordionPanel">
+
-
<div class="AccordionPanelTab tabTop">
+
-
<div class="accordion_340_tab">
+
-
TELLUS PROIN EU ERAT
+
-
</div>
+
-
</div>
+
-
<div class="AccordionPanelContent">
+
-
<div class="acontent">
+
-
<p>Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien. Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor.</p>
+
-
</div>
+
-
</div>
+
-
</div>
+
-
<div class="AccordionPanel">
+
-
<div class="AccordionPanelTab middleTab">
+
-
<div class="accordion_340_tab">
+
-
UMA NON TEMPLUS NUNC
+
-
</div>
+
-
</div>
+
-
<div class="AccordionPanelContent">
+
-
<div class="acontent">
+
-
<p>Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non.</p>
+
-
<p>Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris.</p>
+
-
</div>
+
-
</div>
+
-
</div>
+
-
<div class="AccordionPanel">
+
-
<div class="AccordionPanelTab middleTab">
+
-
<div class="accordion_340_tab">
+
-
CONSECTETUER ADIPICING ELIT
+
-
</div>
+
-
</div>
+
-
<div class="AccordionPanelContent">
+
-
<div class="acontent">
+
-
<img class="imageright" src="images/accordion_photo.jpg" border="0" />
+
-
<p>Cras tempor. Morbi egestas. Tempus, nunc arcu mollis enim, eu aliqu mam erat nullanon nibh consectetuer malesum adavelit. Nam ante nulla, interdum vel, tristique ac, condimentum non, tellus. Proin ornare feugiat nisl.</p>
+
-
<p>Suspendisse dolor nisl, ultrices at, eleifend vel, consequat at, dolor. Vivamus auctor leo vel dui. Aliquam erat volutpat. Phasellus nibh.</p>
+
-
</div>
+
-
</div>
+
-
</div>
+
-
</div>
+
-
<div class="AccordionBottom"></div>
+
</div>
</div>
<div style="clear:both;"></div>
<div style="clear:both;"></div>

Latest revision as of 11:27, 2 July 2010

iGEM-Gothenburg

Chalmers University of Technology

We are a team of 8 students from Chalmers University of Technology who will represent Gothenburg, SWEDEN in this year’s IGEM competition. We have started with a promising idea that combines the cutting edge technologies available in the field of Synthetic Biology. Our research basically aims to constructing a reporter mechanism for cellular stress in yeast. This is done by tagging protein and peptides affiliated with the stress activated SNF1 complex with fluorescent markers.

The project is executed through two main experimental pathways. Both experimental setups will utilize FRET to visualize the conformational change that is the result of the activation of the SNF1 protein. The first approach consists of creating a fusion protein consisting of the SNF1 protein and two fluorescent proteins, namely EYFP and ECFP. The idea is that when the protein is activated it undergoes a conformational change and a FRET-signal will be visible. The second approach utilizes a SAMS-peptide with fluorescent proteins fused to each end. The SAMS-peptide will be phosphorylated by the active SNF1-complex and will undergo a conformational change that will be visible due to the fluorescent tags.

The long term ambition of this project it is to use the results in the pharmaceutical industry when performing high-throughput screening for new substances or finding the correct drug concentrations to use. The yeast cells with the modified SNF-complex can be moved through a micro-fluidic system, gradually exposing them to an array of substances or a concentration gradient and easily finding out at which concentration or substance that the cells are stressed.

As of present we have constructed and ordered primers for all fusion proteins that will be tested if they give a FRET signal in yeast. We are also working on 3D models of the fusion protein and will soon be able to present docking predictions with the complex.