Team:GeorgiaTech/Systems Modeling

From 2010.igem.org

(Difference between revisions)
Line 145: Line 145:
<p><strong>IV) Heat transport in bacterial  colony 2D and 3D (using COMSOL) </strong><br />
<p><strong>IV) Heat transport in bacterial  colony 2D and 3D (using COMSOL) </strong><br />
<center><img src="https://static.igem.org/mediawiki/2010/9/9c/2Dmodel.png" width="" height="" img style="border: 2px solid white"></center>
<center><img src="https://static.igem.org/mediawiki/2010/9/9c/2Dmodel.png" width="" height="" img style="border: 2px solid white"></center>
-
<p>Figure 2.</p>
+
<center><p>Figure 2.</p></center>
<center><img src="https://static.igem.org/mediawiki/2010/3/34/3Dmodel.png" width="" height="" img style="border: 2px solid white"></center>
<center><img src="https://static.igem.org/mediawiki/2010/3/34/3Dmodel.png" width="" height="" img style="border: 2px solid white"></center>
-
<p>Figure 3.</p>
+
<center><p>Figure 3.</p></center>
-
<center><p>Figure 2 and 3 were developed in  COMSOL. They depict 2D and 3D heat transfer in bacterial colony and agarose.  The difference between peak temperatures in both scenarios did not differ by  more than 0.006K which indicates that a 2D control volume may provide  sufficiently accurate representation for heat transport modeling. In a 2D  control volume, heat is transferred radially to the environment. If high aspect  ratio is implemented, as in case of a uniform stretch of bacterial colony  formed on a petri dish, then 1D control volume will be sufficient. </p>
+
<center><p>Figure 2 and 3 were developed in  COMSOL. They depict 2D and 3D heat transfer in bacterial colony and agarose.  The difference between peak temperatures in both scenarios did not differ by  more than 0.006K which indicates that a 2D control volume may provide  sufficiently accurate representation for heat transport modeling. In a 2D  control volume, heat is transferred radially to the environment. If high aspect  ratio is implemented, as in case of a uniform stretch of bacterial colony  formed on a petri dish, then 1D control volume will be sufficient. </p></center>
<p><strong>V) Conclusions:</strong></p>
<p><strong>V) Conclusions:</strong></p>
<ul>
<ul>

Revision as of 19:33, 27 October 2010