Team:Davidson-MissouriW

From 2010.igem.org

(Difference between revisions)
(Undo revision 34920 by Ststreb (Talk))
Line 1: Line 1:
{{Template_Wiki}}
{{Template_Wiki}}
<html>
<html>
-
<body id="tools" onload="setPageSize()">
+
<body id="home" onload="setPageSize()">
 +
  <div id="super_main_wrapper">
 +
    <div id="orangeBox"><h3>Optimizing Codons</h3>
 +
        <p>Filling the knapsack through the optimization and deoptimization of the TetA gene and varying cell viability</p>
 +
        <a href="https://2010.igem.org/Team:Davidson-MissouriW/OptimizingCodons">Details</a>
 +
    </div>
 +
  <div id="greenBox"><h3>Characterizing Cre/Lox</h3>
 +
    <p>Randomly choosing objects to place in the knapsack using the Cre/Lox recombination system thus ensuring that every combination is possible</p>
 +
    <a href="https://2010.igem.org/Team:Davidson-MissouriW/CreLox">Details</a>
 +
  </div>
 +
  <div id="blueBox"><h3>Measuring Gene Expression</h3>
 +
    <p>Visualizing the knapsack problem through controlling environmental variables and manipulating gene order</p>
 +
    <a href="https://2010.igem.org/Team:Davidson-MissouriW/MeasuringExpression">Details</a>
 +
  </div>
   <div class="clear"></div>
   <div class="clear"></div>
-
     <!--<div id="SubWrapper"> -->   
+
     <div id="SubWrapper">   
-
         <div id="mission_box"> <h3> iGEM Davidson – MWSU 2010: Tools </h3>
+
         <div id="mission_box"> <h3> iGEM Davidson – Missouri Western 2010:<br>Fundamental Advancements in Biology and the Knapsack Problem </h3>
-
            <p>The team has created several tools in conjunction with our iGem project.</p>
+
          <p> The Davidson/Missouri Western multidisciplinary team is using synthetic biology to address a mathematical problem in ''Escherichia coli''. Specifically, we are addressing the Knapsack Problem, an NP-complete problem that asks, “Given a finite number of weighted items, can one find a subset of these items that completely fills a knapsack of fixed capacity?”  </p>
-
        </div>
+
 
-
        <br>
+
<p>In our design, weighted items are represented by versions of ''TetA'' genes that confer measurably distinct levels of tetracycline resistanceWe have altered the codons of the wild type ''TetA'' gene, optimizing and de-optimizing several segments of the coding sequenceEach ''TetA'' variant is coupled with a distinctive fluorescent gene, and each pair of genes is flanked by ''lox'' sites. In the presence of Cre protein, the ''lox'' mechanism either inverts or excises the coding sequence, yielding different combinations of expressed ''TetA'' variants. An expressed variant corresponds to an item being placed in the knapsack. Over-expression of ''TetA'' results in cell death, which represents exceeding the capacity of the knapsack. Under-expression of ''TetA'' causes the cells to stop growing due to tetracycline in the growth medium, which represents not completely filling the knapsack. Surviving cells correspond to cells within a certain range of ''TetA'' production and the fluorescence tag allows for comparative measurement within this range.</p>
-
        <div id="Oligator">
+
 
-
            <center>
+
<p>The team is also working to develop software tools relevant to the specific project and applicable to projects in the wider synthetic biology community.</p>
-
                <a href="http://gcat.davidson.edu/igem10/index.html"></a>
+
    </div>
-
            </center>
+
    <div id="team_box"><center><a href="https://2010.igem.org/Team:Davidson-MissouriW/Team"><img src="https://static.igem.org/mediawiki/2010/4/42/Davidson-MissouriWTEAM.jpg" alt="Team"/></a></center>
-
            <a href="http://gcat.davidson.edu/igem10/index.html"
+
        <h3>Team</h3>  
-
                <h3>The Oligator</h3>
+
        <p>View the Davidson-Missouri Western <a href="https://2010.igem.org/Team:Davidson-MissouriW/Team">team </a>page. </p>
-
            </a>
+
    </div>
-
            <table color="#EDE8E2">
+
    <div id="zoo_box"> <center><a href="https://2010.igem.org/Team:Davidhtson-MissouriW/Project"><img src="https://static.igem.org/mediawiki/2010/1/12/Davidson-MissouriWproject1.jpg" alt="Project"/></a></center>
-
                <tbody>
+
        <h3>Project</h3>
-
                    <tr>
+
        <p>View the work done by Davidson and Missouri Western undergrads.</p>
-
                        <td>
+
    </div>
-
                            <p>Designing and building DNA sequences is a fundamental tool for anyone who works in synthetic biology.  The Oligator is designed to choose oligos to create any desired sequence between 20 and 20,000 base pairsThe program allows the user to choose oligo lengths between 20 and 160 bp and overlap lengths of between 20 and 80 bp.   
+
    <div id="lab notebook_box"><center><a href="https://2010.igem.org/Team:Davidson-MissouriW/Notebook"><img src="https://static.igem.org/mediawiki/2010/8/89/Davidson-MissouriWnotebook.jpg" alt="Notebook"/></a></center>
-
The program will also check for and remove BioBrick restriction sites at the request of the user. Choosing the first checkbox will tell the user if BioBrick restriction sites exist anywhere in the entered DNA sequence and embolden where they occur. The second checkbox will remove the sites, leaving the amino acid sequence intact. Since keeping the amino acid sequence the same involves knowing the reading frame, a radio button must be filled in indicating where the reading frame begins.
+
        <h3>Notebook</h3>
-
The final option is to add BioBrick ends to your sequence. This is helpful when cloning your sequence into a BioBrick plasmid. Simply choose which site you want to add to the 5' end. The options are a prefix digested with XbaI, a prefix digested with EcoRI or the entire prefix. You then choose which site you want to add to the 3' end. The options are a suffix digested with SpeI, a suffix digested with PstI or the entire suffix. However, if you choose to add a prefix, you must choose a suffix, and vice-versa. Furthermore, you also have the ability to add a custom prefix and suffix.</p>
+
         <p>View the project's progress via the lab <a href="https://2010.igem.org/Team:Davidson-MissouriW/Notebook">Notebook</a>.</p>
-
                        </td>
+
    </div>
-
                        <td>
+
    <div class="clear">
-
                            <img src="https://static.igem.org/mediawiki/2010/3/33/Davidson-MoWOligator.png" width=409 height=305 alt="gator"/>
+
    </div>
-
                        </td>
+
    <div id="parts_box"> <center><a href="http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2010&group=Davidson-MissouriW"><img src="https://static.igem.org/mediawiki/2010/2/26/Davidson-MissouriWParts.jpg" alt="Parts"/></a></center>
-
                    </tr>
+
        <h3>Parts</h3>
-
                </tbody>
+
         <p>View the <a href="http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2010&group=Davidson-MissouriW">parts</a> created by our team.</p>  
-
            </table>
+
    </div>
-
        </div>
+
    <div id="gallery_box"><center><a href="https://2010.igem.org/Team:Davidson-MissouriW/Tools"><img src="https://static.igem.org/mediawiki/2010/d/dd/Davidson-MissouriWtools1.jpg" alt="Tools"/></a></center>
-
        <div id="Optimoose">  
+
        <h3>Tools</h3>
-
            <center>
+
         <p>A repository of<a href="https://2010.igem.org/Team:Davidson-MissouriW/Tool"> Tools </a>that can be used to assist</p>
-
                <a href="http://gcat.davidson.edu/igem10/opt/opt_index.html"></a>
+
    </div>
-
            </center>
+
    <div id="sponsors_box"> <center><a href="https://2010.igem.org/Team:Davidson-MissouriW/Sponsors"><img src="https://static.igem.org/mediawiki/2010/6/6e/Davidson-MissouriWsponsorship1.jpg" alt="Sponsors"/></a></center>
-
            <a href="http://gcat.davidson.edu/igem10/opt/opt_index.html">
+
        <h3>Sponsors</h3>
-
                <h3>The Optimoose</h3>
+
        <p>To look at our sponsors <a href="https://2010.igem.org/Team:Davidson-MissouriW/Sponsors">go here. </a></p>  
-
            </a>
+
    </div>  
-
            <table color="#EDE8E2">
+
    <div class="clear">
-
                <tbody>
+
    </div>
-
                    <tr>
+
</div> <!-- end SubWrapper -->
-
                        <td>
+
-
                            <p>The Optimoose is a tool designed to allow the user to evaluate the expression level of a sequence from ecoli using either RCBS-PC or the CAI formula. The RCBS-PC, or Relative Codon Bias value takes the observed codon frequency and substract it to the expected codon frequency and divides by the expected frequency.
+
-
The CAI, or Codon Adaptation Index takes the frequency of each codon in a host organism and divides it by the frequency of each codon that appears the most in the host organism; and raise that result to the 1 over L power.  The user has then the option to either optimized or deoptimized the sequence by using one of those two formulas. If the optimize or deoptimize option is selected the user will be given a new sequence in which the codons have been changed to reflect the best, or worst, codons as determined by the selected formula. However, the amino acid sequence is preserved.
+
-
The Optimoose was designed to allow us to assign a given weight to the items to fill up the knapsack.  Based on how optimized or deoptimized the sequence is , and based on the capacity of the knapsack; we could give every items a weight to satisfy our goals.</p>
+
-
                        </td>
+
-
                        <td>
+
-
                            <img src="https://static.igem.org/mediawiki/2010/a/a4/Optimoose.png" alt="Tools" width=400 height=298/>
+
-
                        </td>
+
-
                    </tr>
+
-
                </tbody>
+
-
            </table>
+
-
         </div>
+
-
        <div id="simulation">
+
-
            <center>
+
-
                <a href=""></a>
+
-
            </center>
+
-
            <a href="">
+
-
                <h3>Construct Simulation</h3>
+
-
            </a>
+
-
            <table color="#EDE8E2">
+
-
                <tbody>
+
-
                    <tr>
+
-
                        <td>
+
-
                            <p> In order to be able to better understand how to build our constructs to give us the best system for solving the knapsack problem we created a simulation of the cre-lox system.  This simulation allows the user to test several pre-determined constructs that out team came up with.  In addition, one can create their own custom construct from any number of promoters, lox sites, fluorescent proteins, essential genes, and/or terminators.  The program will then show either a single, animated simulation that will allow the user to see how the lox sites interact, or it will run many simulations and then create a histogram that shows the distribution of what fluorescent proteins were expressed.  In addition, if the user chooses to include weights for the "items" and a capacity for the knapsack the program will tell you whether or not your construct has exceeded the capacity.  In order to run the program, <a href="http://gcat.davidson.edu/igem10/opt/opt_index.html">download the jar file</a> .  To see the actual percentages behind the histogram, the program needs to be run through a command line tool, but other than that simply double clicking the jar file to run it should be sufficient.</p>
+
-
                        </td>
+
-
                        <td>
+
-
                            <img src="https://static.igem.org/mediawiki/2010/1/13/Davidson-MisouriW-SimE.png" alt="sim" width=400 height=225/>
+
-
                        </td>
+
-
                    </tr>
+
-
                </tbody>
+
-
            </table>
+
-
         </div>
+
-
        <div id="VeriPart">
+
-
            <center>
+
-
                <a href="http://72.22.219.205/sequence"></a>
+
-
            </center>
+
-
            <a href="http://72.22.219.205/sequence">
+
-
                <h3>VeriPart</h3>
+
-
            </a>
+
-
            <table color="#EDE8E2">
+
-
                <tbody>
+
-
                    <tr>
+
-
                        <td>
+
-
                            <p>Verifying BioBrick parts can be difficult and tedious by hand.  To solve this problem, we have developed a tool to identify BioBrick parts and devices in a given DNA sequence. When a sequence is entered, the program checks the last archived version of the BioBrick Parts Registry. If your desired part is not found, you can attempt to align the sequence you entered with the part you desire.  Since this search uses a real-time version of the registry, it can potentially find additional parts.  When a device is found in your sequence, you can click to view the sequences of individual parts.</p>  
+
-
                        </td>
+
-
                        <td>
+
-
                            <img src="https://static.igem.org/mediawiki/2010/7/72/Veripart.png" alt="Veri" width=253 height=300/>
+
-
                        </td>
+
-
                    </tr>
+
-
                </tbody>
+
-
            </table>
+
-
         </div>
+
-
        <div id="game">
+
-
            <center>
+
-
                <a href="http://72.22.219.205/knapsack"></a>
+
-
            </center>
+
-
            <a href="http://72.22.219.205/knapsack">
+
-
                <h3>Knapsack Game</h3>
+
-
            </a>
+
-
            <table color="#EDE8E2">
+
-
                <tbody>
+
-
                    <tr>
+
-
                        <td>
+
-
                            <p>In order to aid in the understanding of the Knapsack Problem, we created a game.  The game has two modes: tutorial and challenge, each of which asks the player to fill a knapsack of a certain capacity with given weighted items. The tutorial gives tips about the type of problem and only uses six weighted items. The challenge offers no help and asks the player to choose from nine weighted items. </p>
+
-
                        </td>
+
-
                        <td>
+
-
                            <img src="https://static.igem.org/mediawiki/2010/9/92/Knapsack.png" alt=""/>
+
-
                        </td>
+
-
                    </tr>
+
-
                </tbody>
+
-
            </table>
+
-
        </div>  
+
-
<!--</div> end SubWrapper -->
+
</div> <!-- end Super_main_wrapper -->
</div> <!-- end Super_main_wrapper -->

Revision as of 20:51, 27 July 2010

Optimizing Codons

Filling the knapsack through the optimization and deoptimization of the TetA gene and varying cell viability

Details

Characterizing Cre/Lox

Randomly choosing objects to place in the knapsack using the Cre/Lox recombination system thus ensuring that every combination is possible

Details

Measuring Gene Expression

Visualizing the knapsack problem through controlling environmental variables and manipulating gene order

Details

iGEM Davidson – Missouri Western 2010:
Fundamental Advancements in Biology and the Knapsack Problem

The Davidson/Missouri Western multidisciplinary team is using synthetic biology to address a mathematical problem in ''Escherichia coli''. Specifically, we are addressing the Knapsack Problem, an NP-complete problem that asks, “Given a finite number of weighted items, can one find a subset of these items that completely fills a knapsack of fixed capacity?”

In our design, weighted items are represented by versions of ''TetA'' genes that confer measurably distinct levels of tetracycline resistance. We have altered the codons of the wild type ''TetA'' gene, optimizing and de-optimizing several segments of the coding sequence. Each ''TetA'' variant is coupled with a distinctive fluorescent gene, and each pair of genes is flanked by ''lox'' sites. In the presence of Cre protein, the ''lox'' mechanism either inverts or excises the coding sequence, yielding different combinations of expressed ''TetA'' variants. An expressed variant corresponds to an item being placed in the knapsack. Over-expression of ''TetA'' results in cell death, which represents exceeding the capacity of the knapsack. Under-expression of ''TetA'' causes the cells to stop growing due to tetracycline in the growth medium, which represents not completely filling the knapsack. Surviving cells correspond to cells within a certain range of ''TetA'' production and the fluorescence tag allows for comparative measurement within this range.

The team is also working to develop software tools relevant to the specific project and applicable to projects in the wider synthetic biology community.

Team

Team

View the Davidson-Missouri Western team page.

Project

Project

View the work done by Davidson and Missouri Western undergrads.

Notebook

Notebook

View the project's progress via the lab Notebook.

Parts

Parts

View the parts created by our team.

Sponsors

Sponsors

To look at our sponsors go here.